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What is this sequence approaching?

11

1.110
1.01100
1.0011000
1.000110000
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It is approaching e = 2.718. ..

1'=1

1.110 = 2,593 . ..
1.01190 =2.704 . ..
1.00110%0 = 2.716.
1.000110000 — 2. 718 . ..
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A more general formula

The previous is a special case of

1 n
e = lim <1 + ) .
n— 00 n
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A more general formula

The previous is a special case of

1 n
e = lim <1 + ) .
n— 00 n
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In general,

e = lim (l—i—E)n.
n

n—o0
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Continuous interest

e $1000 at 35% interest after 1 year:
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Continuous interest

e $1000 at 35% interest after 1 year:
1000 (1 + .35) = $1350.00
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Continuous interest

e $1000 at 35% interest after 1 year:
1000 (1 + .35) = $1350.00

e Compounded once a month:
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Continuous interest

e $1000 at 35% interest after 1 year:
1000 (1 + .35) = $1350.00
e Compounded once a month:

35 12
1000 (1 + 12) = $1411.98
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Continuous interest

e $1000 at 35% interest after 1 year:
1000 (1 + .35) = $1350.00
e Compounded once a month:

35 12
1000 (1 + 12) = $1411.98

o Compounded once daily:

Brian Heinold e



Continuous interest

e $1000 at 35% interest after 1 year:
1000 (1 + .35) = $1350.00
e Compounded once a month:

35\ 12
1000 ( 1+ — ) = $1411.98
12
o Compounded once daily:

35\ 365
1 1+ -— = $1418.
000 < + 365> $1418.83
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Continuous interest

e $1000 at 35% interest after 1 year:
1000 (1 + .35) = $1350.00
e Compounded once a month:

35\ 12
1000 ( 1+ — ) = $1411.98
12
o Compounded once daily:

365

o Compounded once a second:

35 365
1000 <1 + > = $1418.83
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Continuous interest

e $1000 at 35% interest after 1 year:
1000 (1 + .35) = $1350.00

e Compounded once a month:

o Compounded once daily:

365

= $1418.
365 = $1418.83

o Compounded once a second:

1 1+
000 < 31536000

1000 (1 + - > = $1411.98
1000 <1 + >

31536000
) = $1419.07
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Continuous interest

e $1000 at 35% interest after 1 year:
1000 (1 + .35) = $1350.00

Compounded once a month:

(]

Compounded once daily:

365

= $1418.
365 = $1418.83

Compounded once a second:

1 1+
000 < 31536000

Compounded continuously:

1000 (1 + - > = $1411.98

1000 <1 +

(]

31536000
) = $1419.07
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Continuous interest

e $1000 at 35% interest after 1 year:
1000 (1 + .35) = $1350.00

Compounded once a month:

(]

Compounded once daily:

365

= $1418.
365 = $1418.83

Compounded once a second:

1 1+
000 < 31536000

Compounded continuously:

1000e’? = $1419.07

1000 (1 + - > = $1411.98

1000 <1 +

(]

31536000
) = $1419.07
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Infinite series

From Taylor series or binomial theorem on (14 1)

1

11 1
e=1+ g+t

1! Pt

Brian Heinold e



Infinite series

From Taylor series or binomial theorem on (14 1)

1 1 1 1
e=lt+qmtgtgtyt
144 =2
1+ 145 =25
1+ &+ 4+ 4 =2.666667
1+ 4+ 4+ 3 + 4 =2.708333
1+ L+ L+ 4+ 5+ 4 =2.716666
L+ + &+ &+ 5+ 4+ & = 2718055
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Infinite series

From Taylor series or binomial theorem on (14 1)

11 1 1
e—l—l—l'—F +3'+4,+
1+ =2
1+ 4+ =25
1+ &+ 4+ 4 =2.666667
1+ 4+ 4+ 3 + 4 =2.708333
1+ L+ L+ 4+ 5+ 4 =2.716666
+u+
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Six lines of Python to compute 1000 digits of e

from fractions import Fraction
from math import factorial
from decimal import Decimal, getcontext

getcontext () .prec = 1000
x = sum(Fraction(l,factorial(i)) for i in range(450))
e = Decimal (x.numerator) / Decimal (x.denominator)
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Six lines of Python to compute 1000 digits of e

from fractions import Fraction
from math import factorial
from decimal import Decimal, getcontext

getcontext () .prec = 1000
x = sum(Fraction(l,factorial(i)) for i in range(450))
e = Decimal (x.numerator) / Decimal (x.denominator)

By Taylor’s theorem, error is less than = 3.5 x 1071003,

_€_
451!
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e to 1000 digits

2.71828182845904523536028747135266249775724709369995957496696 762
7724076630353547594571382178525166427427466391932003059921817413
5966290435729003342952605956307381323286279434907632338298807531
9525101901157383418793070215408914993488416750924476146066808226
4800168477411853742345442437107539077744992069551702761838606261
3313845830007520449338265602976067371132007093287091274437470472
3069697720931014169283681902551510865746377211125238978442505695
3696770785449969967946864454905987931636889230098793127736178215
4249992295763514822082698951936680331825288693984964651058209392
3982948879332036250944311730123819706841614039701983767932068328
2376464804295311802328782509819455815301756717361332069811250996
1818815930416903515988885193458072738667385894228792284998920868
0582574927961048419844436346324496848756023362482704197862320900
2160990235304369941849146314093431738143640546253152096183690888
7070167683964243781405927145635490613031072085103837505101157477
041718986106873969655212671546889570350354. . .
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Computed digits of e (from Wikipedia)

Date
1748
1853
1871
1584
1949
1961
1978
1994 April 1
19599 Movemnber 21
2000 July 16

2003 September 18

2007 April 27
2009 May B
2010 July 5

Number of known decimal digits of &
Decimal digits Computation performed by
23| Leonhard Euler!'®
137 Williarm Shanks
205 William Shanks
346 J. Marcus Boorman
2,010 John van Meumann (on the EMIACY
100,265 Daniel Shanks and John WrenchEY
116,000| Stephen Gary Wozniak (on the Appls BT
1,000,000 Robert Mermiroff & Jerry Bonnell B2
1,250,000,000 | ¥avier Gourdon &1
3221 225 472| Colin Martin & Xavier Gourdon B9
50,100,000,000| Shigeru Konda & Xavier Gourdon &%)
100,000 000,000 Shigeru Kondo & Steve Pagliarlo B
200,000,000,000| Rajesh Bohara & Steve Pagliarulo 291

1,000,000 ,000,000| Shigeru Kondo & Alexander J. Yes B7)
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Derivatives

@ ¢” is best known for being its own derivative.
o It is essentially the only function with that property.
o Why?
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Derivative of y = 2%

Derivative is the slope of the tangent line.

Approximate it by secant lines.

x+h

2

7
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Derivative of y = 2%

Derivative is the slope of the tangent line.

Approximate it by secant lines.

x+h

2

2w+h _ 9oz 2h -1

lope = - 97
Sope (x+h)—z h

As h — 0, we approach the slope of the tangent line.
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Derivatives

o2k
slope = lim
h—0

2]}

@ This is a constant times 2%.
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Derivatives

o2k
slope = lim
h—0

2]}

@ This is a constant times 2%.

h_1
o lim ~ .693
h—0 h
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Derivatives

o2k
slope = lim
h—0

2]}

This is a constant times 2%.

(]

h
-1
~ .693

h

I
hl—rf%) h

-1
o Try 3*: lim ~ 1.099

h—0
h

~ 1.386

(]

Try 47 li
Y
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Derivatives

2h—12x

slope = lim
P h—0

o This is a constant times 2%.
h _
e lim ~ .693
h—0 h
b1
o Try 3*: lim ~ 1.099
h—0
h _
o Try 4%: lim ~ 1.386
h—0
o Getting worse. .. we want a limit of 1. Need a power

between 2 and 3. ..
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Derivatives

2h—12x

slope = lim
P h—0

o This is a constant times 2%.
h—1
o lim ~ .693
h—0 h
h—1
o Try 3*: lim ~ 1.099
h—0
h _
o Try 4%: lim ~ 1.386
h—0
o Getting worse. .. we want a limit of 1. Need a power

between 2 and 3. ..

@ The power that works is e®. Namely, %ir%
_>
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Why it works

el —

Why does lim = 17 A simple heuristic:
h—0
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Why it works

el —

Why does lim = 17 A simple heuristic:
h—0

o For large enough n, e =~ (1 + %)n
o Replace the (large) integer n with 1/h, where h is a small
real number.
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Why it works

el —

Why does lim = 17 A simple heuristic:
h—0

e For large enough n, e =~ (1 + %)n

o Replace the (large) integer n with 1/h, where h is a small
real number.

o e (14 h)/h
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Why it works

el —

Why does lim = 17 A simple heuristic:
h—0

e For large enough n, e =~ (1 + %)n

o Replace the (large) integer n with 1/h, where h is a small
real number.

o e (14 h)/h
@ Soelh~1+h.
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Why it works

el —

Why does lim = 17 A simple heuristic:
h—0

e For large enough n, e =~ (1 + %)n

o Replace the (large) integer n with 1/h, where h is a small
real number.

o e (14 h)/h
@ Soelh~1+h.
oAndehT’lzl.
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Logarithms

log; a answers the question: b to what power equals a?
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Logarithms

log; a answers the question: b to what power equals a?

Example: logs(25) = 2 because 52 = 25

Brian Heinold e



Logarithms

log; a answers the question: b to what power equals a?

Example: logs(25) = 2 because 52 = 25

z |y=log,e
1 0
10 1
100 2
1000 | 3
10000 | 4
A multiplicative change in z corresponds to an additive change
in y.
Formally,

log(ab) = log(a) + log(b)

Brian Heinold e



Logarithms and Integrals

l.n—i—l
/x"dx: 1 But what if n = —17
n
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Logarithms and Integrals

l.n—i—l
/x"dx: 1 But what if n = —17
n

T
1
/ Edt is the area under y = 1/x from t =1 to t = x.
1
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Logarithms and Integrals

l.n—i—l
/x"dx: 1 But what if n = —17
n

T
1
/ Edt is the area under y = 1/x from t =1 to t = x.
1

1 |
1/2 Each has area 1/2
1/4
1/8
12 4 8 16 32

A multiplicative change in z corresponds to an additive change
in the total area.

Brian Heinold e



This leads to

T
1
/ —dt = log x.
Lt

But what is the base?
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This leads to
|
/ —dt = log x.
Lt
But what is the base?

The base is e. -
/ —dt =log,z =Inz.
1 ¢
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This leads to

But what is the base?

The base is e. -
/ —dt =log,z =Inz.
1 ¢

But why not something else, like base 7 or base 443.187
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Why base e

32 1
Say we want / —dx.
1 T
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Why base e

32 1
Say we want / —dzx.
1 T

Suppose instead of powers of 2, we use something smaller, like
powers of r = 1.5.
The smaller rectangles will fit the area more closely.

\

|

\ Each has area = r-1

8
1rs? 2 5 o i I r 32

How many rectangles will there be?
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Why base e

32 1
Say we want / —dx.
1 T

Suppose instead of powers of 2, we use something smaller, like
powers of r = 1.5.
The smaller rectangles will fit the area more closely.

\

|

\ Each has area = r-1

8
1rs? 2 5 o i I r 32

How many rectangles will there be?
Answer: Find the largest power of r less than 32.
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Why base e

32 1
Say we want / —dx.
1 T

Suppose instead of powers of 2, we use something smaller, like
powers of r = 1.5.
The smaller rectangles will fit the area more closely.

\

|

\ Each has area = r-1

8
1rs? 2 5 o i I r 32

How many rectangles will there be?
Answer: Find the largest power of r less than 32.

In other words, solve r* = 32. We get x = bli(g?’f).
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Why base e, cont.

B0 (r —1).

The area is then
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Why base e, cont.

B0 (r —1).

The area is then

Suppose we go smaller than 1.5, say tor =1+ % for some small
value of n.
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Why base e, cont.

B0 (r —1).

The area is then

Suppose we go smaller than 1.5, say tor =1+ % for some small
value of n.

The area is then
log(32) 1

—(1+—=-1
log(1+ 1) ( n )

B log(32)

“nlog(l+ 1)

B log(32)

_log(l + %)”

As n — oo, this becomes log,(32).

Brian Heinold e



e in calculus

In summary, e is so important in calculus because:

o f(z)=e€" is (more or less) the only function whose
derivative is itself

o log.(z) is the antiderivative of 1.

Brian Heinold e



Euler’s formula

e” is directly related to sinz and cos z:

e? = cosf +isind
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Euler’s formula

e” is directly related to sinz and cos z:

e? = cosf +isind

If you plug in § = 7, you get. ..
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Euler’s formula

e” is directly related to sinz and cos z:

e? = cosf +isind

If you plug in § = 7, you get. ..

“The most remarkable formula in mathematics”

em+1=0

Brian Heinold e



e is irrational
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e is irrational

Proof: Suppose e = %' Using the power series for e, we have

N R O I S
qg 12 g (g+1)!  (¢g+2) 7
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e is irrational

Proof: Suppose e = %' Using the power series for e, we have

N R O I S
qg 12 g (g+1)!  (¢g+2) 7

Multiply both sides by ¢! to get

1 1
p(g—1)! = ¢!+q'+q(q—1) ... 32+ - +1+ + +...
(a=1) (a-1) 1 @D+
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e is irrational

Proof: Suppose e = %' Using the power series for e, we have

N R O I S
qg 12 g (g+1)!  (¢g+2) 7

Multiply both sides by ¢! to get

1 1
p(g—1)! = ¢!+q'+q(q—1) ... 32+ - +1+ + +
(=1 =y i1 @ g+ 2)
The left side is an integer. The right side is not because

1 1
a1 T ey T < b

Contradiction!

Brian Heinold e



If you want the details. ..

Even if ¢ = 2, we have %—F % + & + ..., which is small.

Brian Heinold e



If you want the details. ..

Evenifqu,wehave%+%+&+...,Whichissmall.
Formally,
1 1
+
g+1 (¢g+1)(g+2)
<1y ! -
241 (2+1)(2+2)
Sl
stgt-
1
= -1

Brian Heinold



What is the shape of a wire hanging between two points?
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What is the shape of a wire hanging between two points?

It’s called a catenary and its equation is y = § (e:”/a + e_I/“).

Brian Heinold e



A famous Catenary

(Gateway Arch in St.

Brian Heinold @



Derangements

How many ways are there to rearrange the numbers 1, 2, ..., n?
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Derangements

How many ways are there to rearrange the numbers 1, 2, ..., n?
n =2: 12, 21 (2 total)

n =3: 123, 132, 213, 231, 312, 321 (6 total)

n=4: 1234, 1243, ..., 4321 (24 total)
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Derangements

How many ways are there to rearrange the numbers 1, 2, ..., n?
n =2: 12, 21 (2 total)

n =3: 123, 132, 213, 231, 312, 321 (6 total)

n=4: 1234, 1243, ..., 4321 (24 total)

In general it’s n!.
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Derangements

How many ways are there to rearrange the numbers 1, 2, ..., n?
n =2: 12, 21 (2 total)

n =3: 123, 132, 213, 231, 312, 321 (6 total)

n=4: 1234, 1243, ..., 4321 (24 total)

In general it’s n!.

How many ways are there to rearrange so that no number stays
fixed?
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Derangements

How many ways are there to rearrange the numbers 1, 2, ..., n?
n =2: 12, 21 (2 total)

n =3: 123, 132, 213, 231, 312, 321 (6 total)

n=4: 1234, 1243, ..., 4321 (24 total)

In general it’s n!.

How many ways are there to rearrange so that no number stays
fixed?

This is called a derangement.

Brian Heinold e



A curious number

n | Derangements (d,,) | Rearrangements (ry,) | dn/rn

1 |0 1 0.000000
2 |1 2 0.500000
3 |2 6 0.333333
4 19 24 0.375000
5 |44 120 0.366667
6 | 265 720 0.368155
7 | 1854 5040 0.367857
8 | 14833 40320 0.367881
9 | 133496 362880 0.367879
10 | 1334961 3628800 0.367879

What value is the d,,/r, approaching?
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A curious number

n | Derangements (d,,) | Rearrangements (ry,) | dn/rn

1 |0 1 0.000000
2 |1 2 0.500000
3 |2 6 0.333333
4 19 24 0.375000
5 |44 120 0.366667
6 | 265 720 0.368155
7 | 1854 5040 0.367857
8 | 14833 40320 0.367881
9 | 133496 362880 0.367879
10 | 1334961 3628800 0.367879

What value is the d,,/r, approaching?
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Derangements, continued

o How many derangements of 1, 2, 3, 4, 5 are there?
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Derangements, continued

o How many derangements of 1, 2, 3, 4, 5 are there?

o There are 5! rearrangements. From these subtract off the
number that contain fixed elements.
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Derangements, continued

o How many derangements of 1, 2, 3, 4, 5 are there?

o There are 5! rearrangements. From these subtract off the
number that contain fixed elements.

o Number of rearrangements that fix one element: 5 choices
for the element, 4! ways to arrange others, so 5 - 4! in total.
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Derangements, continued

o How many derangements of 1, 2, 3, 4, 5 are there?

o There are 5! rearrangements. From these subtract off the
number that contain fixed elements.

o Number of rearrangements that fix one element: 5 choices
for the element, 4! ways to arrange others, so 5 - 4! in total.

o This overcounts derangements that fix two elements, so
subtract off that count.
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Derangements, continued

o How many derangements of 1, 2, 3, 4, 5 are there?

o There are 5! rearrangements. From these subtract off the
number that contain fixed elements.

o Number of rearrangements that fix one element: 5 choices
for the element, 4! ways to arrange others, so 5 - 4! in total.

o This overcounts derangements that fix two elements, so
subtract off that count.

o But that count overcounts derangements that fix three
elements, so add those back.
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Derangements, continued

o How many derangements of 1, 2, 3, 4, 5 are there?

o There are 5! rearrangements. From these subtract off the
number that contain fixed elements.

o Number of rearrangements that fix one element: 5 choices
for the element, 4! ways to arrange others, so 5 - 4! in total.

o This overcounts derangements that fix two elements, so
subtract off that count.

o But that count overcounts derangements that fix three
elements, so add those back.

o Etc. Approach is called inclusion-exclusion.
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Derangements, continued

o Fix one element: 5 - 4!
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Derangements, continued

o Fix one element: 5 - 4!

5
2

to rearrange rest, so (g) -3!'in total.

o Fix two elements: ( ) choices for the two elements, 3! ways
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Derangements, continued

o Fix one element: 5 - 4!
o Fix two elements: (g) choices for the two elements, 3! ways

to rearrange rest, so (g) -3!'in total.
o Fix three elements: (g) - 2!
Fix four elements: (i) - 1!

Fix five elements: (g) 0!

(]
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Derangements, continued

(]

Fix one element: 5 - 4!

5
2

to rearrange rest, so (g) -3!'in total.

(]

Fix two elements: ( ) choices for the two elements, 3! ways

o Fix three elements: (g) - 2!
Fix four elements: (i) - 1!
Fix five elements: (g) 0!

All together: 5! — (5-4! — (g) 31+ (g) 20— (Z) 1+ (g) -0

(]

(]
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Derangements, continued

(]

Fix one element: 5 - 4!

(]

Fix two elements: (g) choices for the two elements, 3! ways
to rearrange rest, so (g) -3!'in total.

o Fix three elements: (g) - 2!

e Fix four elements: (i) - 1!

o Fix five elements: (g) - 0!

o All together: 5! — (54! — (g) -3+ (5) 21— (5) A+ (g) -0
o Simplify: 5! — (5 4! 5~z21i3! 4 5~4é:!3~2' 542'2 LI g:)
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Derangements, continued

o Fix one element: 5 - 4!

o Fix two elements: (g) choices for the two elements, 3! ways
to rearrange rest, so (g) -3!'in total.

o Fix three elements: (g) - 2!

e Fix four elements: (i) 1!

o Fix five elements: (g) - 0!

o All together: 5! — (54! — (g) -3+ (5) 21— (5) A+ (g) -0

o Simplify: 5! — (5 4! 5~421i3! + 5~4é:!%~2' 542'2 LI g:)

e Further: 5!(1—1—}—%—%4—%— )

Il
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Derangements, continued

o Fix one element: 5 - 4!
o Fix two elements: (g) choices for the two elements, 3! ways
to rearrange rest, so (g) -3!'in total.

o Fix three elements: (g) - 2!

o Fix four elements: (i) - 1!

o Fix five elements: (g) 0!

o All together: 5! — (54! — (g) <314 (5) 20— (5) 14 (g) -0

541 5431 | 5432  54:32.1 , 5!
(o — = + 75 50

e Further: 5!(1—1—}—%—%4—%—%)

o Simplify: 5! —

o In general: n!(1—1+ 4 — 4 + -+ SO
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Derangements, continued

(]

Fix one element: 5 - 4!

Fix two elements: (g) choices for the two elements, 3! ways
to rearrange rest, so (g) -3!'in total.

Fix three elements: (g) - 2!

Fix four elements: (i) -1

Fix five elements: (g) - 0!

All together: 5! — (5-4! — (g) 31+ (5) 20— (5) 1+ (g) -0
Simplify: 5! — (52 Al 5~421;3! + 5~4é:'3~2' 543 LI g:)

Further: 5!(1 —1 + 3, + o= l)

In general: n!(1—1+ 3 — 3 +- (_nﬁ)

We see the power series for 1 /e here

Brian Heinold e



o e is called Fuler’s constant or Napier’s constant.
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o e is called Fuler’s constant or Napier’s constant.

o In early 1600s John Napier invented logarithms.
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o e is called Fuler’s constant or Napier’s constant.
o In early 1600s John Napier invented logarithms.

@ The method he used to generate his tables involved e
although he didn’t recognize it in the way we now know it.
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e is called Fuler’s constant or Napier’s constant.

(]

In early 1600s John Napier invented logarithms.

@ The method he used to generate his tables involved e
although he didn’t recognize it in the way we now know it.

Jacob Bernoulli discovered e in the late 1600s studying
compound interest.
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e is called Fuler’s constant or Napier’s constant.

(]

In early 1600s John Napier invented logarithms.

@ The method he used to generate his tables involved e
although he didn’t recognize it in the way we now know it.

Jacob Bernoulli discovered e in the late 1600s studying
compound interest.

Leonhard Euler in 1700s gave it the symbol e.
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e is called Fuler’s constant or Napier’s constant.
In early 1600s John Napier invented logarithms.

The method he used to generate his tables involved e
although he didn’t recognize it in the way we now know it.

Jacob Bernoulli discovered e in the late 1600s studying
compound interest.

Leonhard Euler in 1700s gave it the symbol e.

Euler did a lot with e.
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Interesting facts and formulas

o Bell curve y = e=2°/2
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Interesting facts and formulas

2
e Bell curve y = e */2
2
o [Te v /2= /n/2
el el/3  o1/5 1/7

o Infinite product: 2 = o1/2 " /AT g1/6 " /st
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Interesting facts and formulas

o Bell curve y = e=2°/2

15 /2 = /2

® Jo
. 1 1/3 1/5 1/7
o Infinite product: 2= 55 - S5 - S5 - S5 .-
o A continued fraction:
1
e=2+ T
14+ ———5—
4+TZIM
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o Infinite product: 2= 75 - 55 - S5 - S5
@ A continued fraction:
1
e=2+ T
L Wi ——
3
3+*4*4+ﬁ
e Stirling’s formula n! ~ /27n (%)n

Brian Heinold e



Interesting facts and formulas

o Bell curve y = e=2°/2

15 /2 = /2

0
. 1 1/3 1/5 1/7
o Infinite product: 2= 75 - 55 - S5 - S5
@ A continued fraction:
1
e=2+ T
L Wi ——
3
3+*4*4+ﬁ
e Stirling’s formula n! ~ /27n (%)n
@ e = %

Brian Heinold e



Interesting facts and formulas

o Bell curve y = e=2°/2

ofoooe_$2/2: /2

. 1 1/3 1/5 1/7
o Infinite product: 2= 55 - 55 - S5 - S5
o A continued fraction:
1
e=2+ T
4+TZIM

e Stirling’s formula n! ~ v2mn (%)n

o Ver =i

o Google’s 2004 TPO announced they were trying to raise

$2,718,281,828.
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Thank you for your attention.

Brian Heinold



