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Ordinary plot of f(x, y) = x2 + y2
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Contour plot of f(x, y) = x2 + y2
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Looking down from above

Brian Heinold Beautiful Images from Some Simple Formulas



Colored contour map
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Temperatures maps are contour maps.

Brian Heinold Beautiful Images from Some Simple Formulas



Pressure maps are, too.

Brian Heinold Beautiful Images from Some Simple Formulas



Back to f(x, y) = x2 + y2
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Graph vs. contour plot
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Color scheme
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cos(x sin(y − x) + cos(y)) + sin(y) cos(x− y sin(x− cos(y)))
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sin(x + cos(y − y cos(x)) + x sin(y)) + rand(100)/400
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fact(abs(floor(12 cos(sin(x + sin(y))))))
+ fact(abs(floor(11 sin(y + cos(x + sin(y − x)))))) + y
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Floor function

The floor function returns the greatest integer less than or
equal to the given number.
floor(2.56) = 2, floor(3.98) = 3, and floor(−3.98) = −4
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Another complicated sines and cosines formula
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22 cos(x) + 22 sin(y)
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sin(x) + cos(y) + sin(2x) + cos(2y) + sin(3x) + cos(3y)
+ sin(4x) + cos(4y) + sin(5x) + cos(5y)
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Riemann function

riem(x) =

∞∑
n=1

sin (n2x)

n2
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Riemann function

It is continuous everywhere, but differentiable almost nowhere.

The best we can do is approximate it:

riem(x, k) =

k∑
n=1

sin (n2x)

n2

riemc(x, k) =

k∑
n=1

cos (n2x)

n2
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riem(x + riemc(y − x) + riem(riemc(x + riem(y)) + x))
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riem(x + riemc(y − x) + riem(riemc(x + riem(y)) + x))
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riem(t, 20) riem(r, 20)
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More polar coordinates
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Mod function

It returns the remainder when a number is divided by another.

20 mod 7 = 6 because the remainder when 20 is divided by 7 is
6.

It is represented by % in the formulas.
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Bitwise AND function

We represent it by the symbol &

1=True, 0 = False

1 & 1 = 1, 1 & 0 = 0, 0 & 1 = 0, 0 & 0 = 0

To compute 11&14:

1 Convert each to binary → 1011 & 1110

2 AND the corresponding digits → 1010

3 Convert back to decimal → 10
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Plot of x& y = 0
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√
tan(100 sin(x)&100 cos(y))20 cos(x)&20 sin(y)
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Bitwise NOT function

It is the logical not function, represented by !.

!1 = 0 and !0 = 1

Extend this to R by defining !x to equal 1 if −1 < x < 1 and 0
otherwise.
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!(cos(x) + sin(y))+!(cos(x)− sin(y))+!(sin(x)− cos(y))
+!(sin(x)− 2 cos(y))+!(sin(x) + 2 cos(y))
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!(2 cos(y)%x)+!(2 sin(x)%y)+!(3 cos(y)%x)+
!(3 sin(x)%y)+!(4 cos(y)%x)+!(4 sin(x)%y)

Brian Heinold Beautiful Images from Some Simple Formulas



floor(10(cos(x) + sin(y)))%(x& floor(10(sin(x) + cos(y))))

Brian Heinold Beautiful Images from Some Simple Formulas



Complex numbers

i =
√
−1 (solution to x2 + 1 = 0)

Examples: 2i, 3 + 4i, −.2 + .76i

Addition: (2 + 3i) + (5 + 8i) = 7 + 11i

Multiplication: (2 + 3i)(5 + 8i) = 10 + 31i + 24i2 = −14 + 31i

Division: 2+3i
5+8i = 2+3i

5+8i ·
5−8i
5−8i = 34−8i

89 = 34
89 + 8

89 i
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Picturing them
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Iteration

Example: Let f(x) = x2 and start with x = 2.

f(2) = 4
f(4) = 16
f(16) = 256
f(256) = 65536
. . .

Iterates are approaching ∞.
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A different starting point

Let f(x) = x2 and start with x = 1
2 .

f(12) = 1
4

f(14) = 1
16

f( 1
16) = 1

256

f( 1
256) = 1

65536

. . .

Iterates are approaching 0.
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Another example

Let f(x) = −x and start with x = 1.

f(1) = −1
f(−1) = 1
f(1) = −1
f(−1) = 1
. . .

Iterates are not settling down on a value.
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Coloring by convergence

Color each point according to how fast it converges.

Count how many iterations until two successive values are
within .00001 of each other.

Assign each count a color.

Convergence to infinity is still convergence (color by # of steps
to exceed ±105).
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Iteration with complex numbers

Plug z = x + iy into f(z). Get a value, and plug that value into
the function. Then plug the result of that into the function, etc.
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The process

Look at all the possible starting values in a region.

For each starting point, iterate the function.

If two successive values are within .00001 of each other, there’s
a very good chance that the iterates will converge.
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The process, continued

In this case, color the point with a color representing how long
it took for this to happen.

It is possible that the iteration may never stop. Give up after a
few hundred iterations and color the point yellow.

Note: convergence to infinity is still convergence (color by how
many steps for iteration to exceed ±105).
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Color scheme
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f(z) = c · sin (ln z)

sin (x + iy) = sinx cosh y + i cosx sinh y

ln z = ln |z|+ i arg z

ex+iy = exeiy = ex(cos y + i sin y)

Different values of c produce wildly different pictures.
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c · sin (ln z)
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c · sin (ln z)
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c · sin (ln z)
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c · sin (ln z)
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c · ln (sin z)
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c · ln (sin z)
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c · ln (sin z)
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c · ln (sin z)
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c · ln (sin z)
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c · ln (sin z)
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c · ln (sin z)
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c · ln (sin z)
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c · sin (ln (sin (ln z)))
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c · sin (ln (sin (ln z)))
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c · ln (cos z)
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c · ln (cos z)
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c · ln (csc z)
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c · ln (csc z)
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c · ln z4
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c · ln z2
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c · ln z3
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c · ln z3
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c · ln z4
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c · ln (z · sin z)
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c · ln (z · sin z)
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c · ln (z · sin z)
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c · ln (z · sin z)
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c · ln (cos (z + c))
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c · sec (1/z2)
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c · csc (1/z)
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sec (cz)
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|z/(cos (c · sin z))|
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Re(z/(cos (c · sin z)))
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c(1− y) sinx cos y
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Raising a complex number to a non-integral power

Exponentiation: zp = eln z
p

= ep ln z

This leads to something interesting:

ii = ei ln i = ei(ln |i|+i arg i) = ei(ln 1+iπ/2) = e−π/2

But not without precedent:(
2
√
2
)√2

= 4
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z − (zc + z − 1)/(czc−1 + 1)
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z − (zc + z − 1)/(czc−1 + 1)
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z − (zc + z − 1)/(czc−1 + 1)
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z − (zc + z − 1)/(czc−1 + 1)
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zic
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zic
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zcz
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Some unusual functions

“absn” function: absn(z) = |z|+ i Im(z)

“floor” function: floor(x + iy) = floor(x) + i · floor(y)

“and” function: (x + iy)&(a + ib) = (x&a) + i(y&b)
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absn(z2) + i · absn(1/z) + c
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absn(z − (zc − 1)/(czc−1))
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floor(cz)
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c floor(sec(z))
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c(x% Re(sin(z)) + iy% Im(sin(z)))
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c(x% Re(sin(z)) + iy% Im(sin(z)))

Brian Heinold Beautiful Images from Some Simple Formulas



c((x&y) · (x < 0) + z · (x > 0))
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c((x&y) · (x < 0) + z · (x > 0))
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c(floor(z) · (x > 0) + ceil(z) · (x < 0))
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c · floor(csc z sec z)
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“Not” function

!(x + iy) =!x+!y
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cz·!z
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cz·!z

Brian Heinold Beautiful Images from Some Simple Formulas



cz·!z
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cz·!z
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(cz)·!(z + c)
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cz(!x + (x&y))
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cz(!x + (x&y))
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c · ln (sin (z·!z))

Brian Heinold Beautiful Images from Some Simple Formulas


