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Abstract

List coloring is a generalization of graph coloring where the vertices of a graph
are given lists of colors, and vertices are to be assigned colors from their lists so that
adjacent vertices get different colors. Let f be a function assigning list sizes to the
vertices of a graph G. The function f is called choosable if for every assignment of
lists to the vertices of G with list sizes given by f , there exists a coloring of G from the
lists (with adjacent vertices receiving different colors). The sum choice number is the
minimum over all choosable f of the sum of the list sizes of f . We first answer some
questions raised in a paper of Berliner, Bostelmann, Brualdi, and Deatt. Namely,
we determine the sum choice number of the Peterson graph, the Cartesian product
of paths P2 Â Pn, and the complete bipartite graph K3,n. We then determine the
sum choice number of P3 Â Pn. Finally, to settle a question of Isaak, Albertson, and
Pelsmajer, we investigate the choosability of fan graphs, Pn ∨K1, graphs obtained by
joining to a path a single vertex adjacent to each vertex of the path. The techniques
developed herein have applications to other classes of graphs.
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Chapter 1

Introduction

Graph coloring is one of the oldest and most well-known branches of graph theory.
It has a myriad of applications, including register allocation for computer programs,
and assignment of frequencies to radio stations. Many problems of both practical
and mathematical interest can be modelled as graph coloring problems. Perhaps the
most famous example of graph coloring is the Four Color Theorem, which states that
any map can be colored with at most four colors in such a way that adjacent regions
get different colors. There are numerous variations on graph coloring, and the one
we will be interested in here is called list coloring. The vertices of a graph are given
lists of colors, and vertices are to be assigned colors from their lists so that adjacent
vertices get different colors. List coloring was introduced in the late 1970s, and has
been well-studied since. It has applications to a variety of scheduling problems.

1.1 Terminology

We will follow the notation of West [11]. Let G be a graph. We denote the vertex set
of G by V (G), and the edge set by E(G). All graphs here are assumed to be finite and
simple; loops and multiple edges are of no significance to the coloring problems we
consider here. Let v, w ∈ V (G). We use vw or wv to denote the edge with endpoints
v and w, and we say v and w are adjacent. A subgraph of G is a graph H such
that V (H) ⊂ V (G) and E(H) ⊂ E(G), and the edges of H have the same endpoints
as they have in G. A subgraph H is said to be induced if for any pair of vertices
v, w ∈ V (H), vw ∈ E(H) whenever vw ∈ E(G). The complement of G, denoted G, is
the graph having the same vertex set as G, and vw ∈ E(G) if and only if vw 6∈ E(G).
If H is an induced subgraph of G, then G − H denotes the subgraph induced by the
vertices of V (G)\V (H). If H consists of a single vertex v, then we will write G − v
for this. Let G1 and G2 be graphs. The union G1 ∪ G2 is the graph with vertex
set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). The disjoint union G1 + G2 is the
union of G1 and G2 with disjoint vertex sets. The graphs G1 and G2 are said to be
isomorphic if there exists a bijection g : V (G) → V (H) such that vw ∈ E(G1) if and
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only if g(v)g(w) ∈ E(G2).
A neighbor of a given vertex is a vertex to which it is adjacent. The neighborhood

of a vertex v, denoted N(v), is the subset of V (G) consisting of all the vertices adjacent
to v. If H is a subgraph of G, we write NH(v) to denote the set consisting of all the
neighbors of v which are in H. The degree of a vertex v, denoted deg(v), is the size
of the neighborhood of v. If H is a subgraph of G, degH(v) denotes the number of
vertices of H to which v is adjacent. A leaf in a graph is a vertex of degree 1. An
independent set in a graph is a subset of pairwise non-adjacent vertices. A vertex is
called isolated if it is adjacent to no other vertices.

The complete graph on n vertices, denoted Kn, is the graph on n vertices in
which every vertex is adjacent to every other vertex. A graph G is called bipartite if
V (G) = V (X) ∪ V (Y ), where X and Y are independent sets. The complete bipartite
graph with partite sets of size p and q, denoted Kp,q, has all possible edges between
the partite sets (see Figure 1.2a). A path on n vertices is a graph with vertex set
{v1, . . . , vn} and edge set {vivi+1 : i = 1, . . . , n − 1}. A cycle on n vertices is a graph
with vertex set {v1, . . . , vn} and edge set {vivi+1 : i = 1, . . . , n}, where the addition
is modulo n. The length of a path or cycle is the number of vertices. The graph
which is a path on n vertices is denoted by Pn, and similarly the cycle on n vertices
is denoted Cn. An odd (even) cycle is a cycle with odd (even) length. A graph is
called connected if any two vertices lie on a path. A tree is a connected graph with no
cycles. A graph is called 2-connected if upon the deletion of any vertex, the resulting
graph is still connected. A block of a graph is a maximal 2-connected subgraph. For
example, in Figure 1.1, the blocks are the subgraphs induced by {v1, v2}, {v2, v3},
{v3, v11, v12}, {v4, v5, v10, v11}, and {v5, v6, v7, v8, v9}.

v1 v2 v3 v4 v5

v6

v7

v8v9v10v11v12

Figure 1.1: Example of blocks

A planar graph is a graph which can be embedded in the plane, that is, it can
be drawn so that its edges never cross. An outerplanar graph is a planar graph such
that all the vertices lie on a circle in the plane, and any edges are on or within
the circle. The Peterson graph is the graph in which the vertices correspond to
the 2-element subsets of a 5-element set, with an edge between two vertices if and
only if their corresponding 2-element subsets are disjoint (see Figure 1.2b). The
Cartesian product of two graphs G1 and G2, denoted G1 Â G2, is the graph with
vertex set V (G1) × V (G2), with an edge between (v, w) and (v′, w′) if and only if
w = w′ and vv′ ∈ E(G1), or v = v′ and ww′ ∈ E(G2). The join of two graphs G1
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and G2, denoted G1 ∨ G2, is the graph with vertex set V (G1) ∪ V (G2), and edge set
E(G1)∪E(G2)∪{v1v2 : v1 ∈ E(G1), v2 ∈ E(G2)}. For example, the complete bipartite
graph Kp,q can be expressed as Kp∨Kq. The line graph L(G) of a graph G is obtained
from G by letting V (L(G)) = E(G) and assigning an edge between vertices if and
only if their corresponding edges in G share an endpoint. A theta graph, θk1,k2,k3 , is a
graph consisting of two vertices connected by three internally vertex disjoint paths,
having k1, k2, and k3 internal vertices, respectively, 0 ≤ k1 ≤ k2 ≤ k3 (see Figure
1.2c). A fan graph Fn is the graph Pn ∨ K1, obtained by joining a vertex to a path.

(a) (b) (c)

Figure 1.2: K3,4, the Peterson graph, and θ3,4,2

1.2 Graph coloring

A coloring of a graph G is an assignment of labels from a set C to the vertices of
G. Formally, it is a map c : V (G) → C. The labels are usually called colors, as
the concept of graph coloring arose from a map coloring problem. We will assume
that the elements of C are positive integers. A proper coloring is a coloring such that
adjacent vertices are assigned different colors. We say G is k-colorable if there exists
a proper coloring c of G such that |{c(v) : v ∈ V (G)}| = k. The chromatic number
of a graph, denoted χ(G), is the minimum integer k such that G is k-colorable. In
other words, it is the least number of colors needed to properly color the graph.

Greedy coloring easily shows χ(G) ≤ ∆(G)+1, where ∆(G) denotes the maximum
vertex degree of G. By greedy coloring we mean that we choose some ordering of the
vertices, and color the vertices in order such that each is assigned the least color
(taking the colors to be positive integers) not assigned to any adjacent vertex of
smaller index. One can improve the upper bound slightly to χ(G) ≤ ∆(G), provided
G is a connected graph which is neither an odd cycle nor a complete graph. This is
Brooks’ Theorem. An obvious lower bound for χ(G) is ω(G), the clique number of G,
which is the size of the largest subset of V (G) whose elements are pairwise adjacent.
One may easily prove that χ(G) = 2 if and only if G has no odd cycles. However, if
k ≥ 3, determining if a graph is k-colorable is NP-complete (see [11], for example).
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1.3 List coloring

List coloring is a generalization of graph coloring in which each vertex is given a list
of permissible colors, and one tries to assign colors to vertices such that each vertex
is assigned a color from its list, with adjacent vertices getting different colors. More
formally, a size function f : V → Z assigns to each vertex a list size. An f -assignment
C : V → 2C is an assignment of lists of colors to each vertex v such that |C(v)| = f(v).
A C-coloring is a function c : V → C such that c(v) ∈ C(v), and c is called proper
if adjacent vertices get different colors. If G has a proper C-coloring we say G is
C-colorable, or simply that C is colorable. A size function f is called choosable if
every f -assignment has a proper coloring, and if we wish to emphasize the graph,
we may instead say that (G, f) is choosable. A choosable size function is called a
choice function. By convention, if f(v) ≤ 0 for some v, then any f -assignment C has
C(v) = ∅, and f is not choosable. Lists such as {1, 2, 3} are written in the abbreviated
form 123.

As an example, consider (P2 Â P3, f) with f ≡ 2, and let C be the f -assignment
shown in Figure 1.3. Any proper C-coloring must either use color 1 on the top middle

12

12 13

13 23

23

Figure 1.3: A list coloring example

vertex and color 2 on the bottom middle vertex or vice-versa. In the former case
such a coloring would be forced to use color 3 on both vertices on the left, and in the
latter case color 3 is forced to be used on both vertices on the right. Hence there is
no proper coloring from C. This shows that f ≡ 2 is not choosable. On the other
hand, one can show f ≡ 3 is choosable using a greedy algorithm. In other words, it
is impossible to come up with lists of size 3 from which there is no proper coloring.

If (G, f) is choosable with f ≡ k for some integer k, then G is said to be k-
choosable. The smallest constant k for which is G is k-choosable, is called the list
chromatic number or choice number, and has been a topic of considerable interest.
It is typically denoted by χl(G). If all the lists are the same, list coloring reduces to
ordinary coloring, so χl(G) ≥ χ(G). However, equality need not hold. The example
in Figure 1.3 shows this, as χ(P2 ÂP3) = 2, but χl(P2 ÂP3) = 3. As another example,
consider K3,3. It is bipartite, hence χ(K3,3) = 2, but, in fact, χl(K3,3) = 3. To see
this, let X and Y be the partite sets, and assign the lists 12, 13, and 23 to the three
vertices of X, respectively, and also to the three vertices of Y (see Figure 1.4). No
proper coloring from these lists can assign color 1 to one of the vertices of X and color
2 to another, as then there would be no way to properly color the vertex of Y assigned
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list 12. Similarly, no proper coloring could assign colors 1 and 3 or colors 2 and 3
to different vertices of X. Thus, there can be no proper coloring from these lists.
Notice that the lists we chose are the 2-element subsets of a 3-element set. A similar
argument using the k-element subsets of a (2k−1)-element set shows that χl(Kp,p) > k
for p =

(
2k−1

k

)
. However, χl(Kp,p) 6= k + 1 if k ≥ 3. For example, one can verify that

the lists 123, 145, 167, 247, 256, 346, and 357 assigned to each partite set show that
K7,7 is not 3-choosable. These lists correspond to the lines of the Fano plane. In fact,
for an arbitrary positive integer p, the choice number of Kp,p is not known. Erdős,
Rubin, and Taylor [3] showed that asymptotically χl(Kp,p) = log2 p + o(log n).

12

12 13

13

23

23

Figure 1.4: Lists showing K3,3 is not 2-choosable

Even the determination of those pairs (p, q) for which Kp,q is 3-choosable has
turned out to be very difficult, though it has been solved. In fact, determination of the
choice number on complete bipartite graphs is NP-Complete [8]. Further, A.L. Rubin
showed that if f is a size function such that f(V ) ⊂ {2, 3}, the problem of deciding
if (G, f) is choosable is Πp

2-Complete [3]. That is, if existing conjectures related to
P=NP hold, then choosability is a strictly harder problem than ordinary coloring.
Intuitively, graph coloring is hard in the sense that no polynomial algorithm is known
(or is likely to be found) that will determine if an arbitrary graph is 3-colorable;
however, given a 3-coloring of a graph, one can easily verify (in polynomial time)
that it is indeed a 3-coloring. On the other hand, choosability is hard in the sense
that no polynomial algorithm is known (or is likely to be found) that will determine
if an arbitrary graph is f -choosable, for f(V ) ⊂ {2, 3}; however, even given an f -
assignment which is not choosable, it is an NP-complete problem to determine that
there is no proper coloring from the lists (see [9]).

List coloring was introduced by Erdős, Rubin, and Taylor [3] in 1979, and inde-
pendently by Vizing [9] in 1976. The authors of [3] proved that a graph is 2-choosable
if and only if its core is 2-choosable, where the core of a graph is the graph obtained
by repeatedly deleting vertices of degree 1 until no such vertices remain. This is
reasonable, as a vertex with degree 1 and list size 2 can always be properly colored.
Further, they proved that the only cores that are 2-choosable are a single vertex, even
cycles, and theta graphs of the form θ1,1,2k+1 for k ≥ 0. In addition, they proved an
analogue of Brook’s Theorem, namely that χl(G) ≤ ∆(G) for any connected graph
G that is neither complete nor an odd cycle. Since then, considerable work has been
directed to the study of list coloring. One notable result is Thomassen’s elegant proof
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that planar graphs are 5-choosable [7], which since χ(G) ≤ χl(G), provides a short
proof of the 5-color theorem for planar graphs. However, there are non 4-choosable
planar graphs [10]. Perhaps the most well-known conjecture is the so-called list col-
oring conjecture, which states that for any graph G, χl(L(G)) = χ(L(G)). That is,
if we color edges instead of vertices, the list chromatic number and ordinary chro-
matic number are the same. See [1], [8], and [12] for more details. Incidently, these
references are quite interesting survey articles on list coloring.

1.4 Sum list coloring

Rather than fixing all the lists to have the same size, as is done in the study of the
list chromatic number, we could allow the list sizes to vary, and try to minimize
the sum of the list sizes. That is, we seek the smallest constant k for which there
exists a choosable f with

∑
v∈V f(v) = k. This constant is called the sum choice

number of the graph, and is denoted by χSC(G). We denote
∑

v∈V f(v) by size(f),
and a choosable f for which size(f) is as small as possible is called a minimum choice
function. Sum list coloring was introduced by Isaak [5, 6], and further studied by
Berliner, Bostelmann, Brualdi, and Deatt [2].

Essentially, we are looking for a smallest choice function. Our measure of smallness
is the size of f , the sum of the list sizes. Showing χSC(G) = k proceeds in two parts.
We must exhibit a size function f of size k such that every f -assignment has a proper
coloring, and for every g of size k− 1, we must show there exists a g-assignment with
no proper coloring. Note that it suffices to consider size functions of size k − 1, for if
there exists a choosable g′ of size k−t for t > 1, then we get a choosable g of size k−1
by picking an arbitrary vertex v0 and letting g(v0) = g′(v0) + t − 1 and g(v) = g′(v)
for v 6= v0.

As an example, we now show that χSC(C3) = 6. Let the vertices be v1, v2, v3.
The size function f given by f(vi) = i for i = 1, 2, 3 is choosable by greedy coloring
(see Figure 1.5a). Conversely, up to symmetry, the only size functions of size 5 are
those shown in Figure 1.5b. The size function with adjacent vertices of list size 1 is
clearly not choosable. The other size function is not choosable, as the list assignment
which assigns the list 12 to the two vertices of list size 2 and the list 1 to the other
vertex has no proper coloring.

Notice that C3 is not 2-choosable, as it is not 2-colorable. On the other hand,
C3 is clearly 3-choosable. For a given graph G, the determination of both χl(G) and
χSC(G) are minimization problems. We see that in this example, in some sense, sum
list coloring gives a stronger result than ordinary choosability. The smallest choice
function given by ordinary choosability is (f(v1), f(v2), f(v3)) = (3, 3, 3), whereas
sum list coloring gives (1, 2, 3).

We can get an upper bound for the sum choice number as follows. Choose any
ordering v1, . . . , vn of the vertices of G. Define a size function f by f(vi) = 1 + |{vj :
i < j, and vivj ∈ E(G)}| for i = 1, . . . , n. Then size(f) = n + e, where n is the
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11

11 22 23

3

(a) (b)

Figure 1.5: A choice function of size 6 on C3, and the two nonchoosable size functions
of size 5

number of vertices of G and e is the number of edges. Greedy coloring shows that
f is choosable, and hence for any graph, χSC(G) ≤ n + e. We will refer to n + e as
the greedy bound, and sometimes denote it by GB(G), or just GB when there is only
one graph involved. Any graph for which the sum choice number is in fact n + e is
called sc-greedy. Isaak [6] showed that paths, cycles, complete graphs, and trees are
all sc-greedy. In fact, he showed that block graphs, graphs in which every block is a
cycle or a complete graph are sc-greedy. This result was improved by the authors of
[2], who showed that if all the blocks of a graph are sc-greedy, then the graph itself
is sc-greedy.

In addition to the aforementioned results, Isaak [5] determined the sum choice
number of the Cartesian product K2 Â Kn. The authors of [2] determined the sum
choice number of the complete bipartite graph K2,q, showing that the sum choice
number is far below the greedy bound for large q. Moreover, they considered graphs
obtained from Kn by joining a new vertex to all vertices of some subgraph, and
showed that such graphs are sc-greedy. From this they concluded that every tree on
n vertices can be obtained from the complete graph Kn by repeatedly deleting edges
such that, at every step, the intermediate graphs are sc-greedy.

The most general and most difficult list coloring problem is to give a choosability
characterization. That is, given a graph G, one seeks necessary and sufficient condi-
tions on size functions f such that (G, f) is choosable, or perhaps a fast algorithm
to decide if (G, f) is choosable. As mentioned before, deciding the choosability of a
size function when all list sizes are 2 or 3 is Πp

2-Complete. However, the problem is
tractable for certain classes of graphs. For example, a size function on the path Pn is
choosable if and only if there is no subgraph of Pn to which f assigns list size 1 to the
two endvertices and list size 2 to every internal vertex (see Lemma 4.2). In addition,
Isaak [6] provided some choosability tests for block graphs.

1.5 Thesis outline

In Chapter 2, we first prove a lemma that breaks up the computation of the sum choice
number into two parts, allowing for a considerable simplification of many proofs. We
then answer a few questions raised in [2]. The first of these is to show that P2 Â Pn
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is sc-greedy. Then, thinking of P2 Â Pn as a string of squares laid end-to-end, we
consider, by analogy, a string of triangles laid end-to-end, and show it is also sc-
greedy, though by a more delicate method. In answer to a second question, we show
that the Peterson graph is sc-greedy. As a lemma required for the proof, we determine
the sum choice number of theta graphs. We then partially answer another question by
computing the sum choice number of K3,q. The techniques developed are applicable
to other graphs, and in fact we use them to provide a shorter computation of the
sum choice number of K2,n than that given in [2]. In Chapter 3, we develop the idea
of the configuration number, and prove a few lemmas of general applicability. We
then use the ideas developed therein to compute the sum choice number of P3 Â Pn.
The proof is a lengthy case analysis. In Chapter 4, we consider choosability of fan
graphs. In particular, Isaak, and independently Albertson and Pelsmajer, asked if
every outerplanar graph is sc-greedy. We show that fan graphs, a class of outerplanar
graphs, are not sc-greedy in general, and that, in fact, the gap between the greedy
bound and the sum choice number can be arbitrarily large. The techniques used in
Chapter 4 also have applications to other classes of graphs.
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Chapter 2

Sum Choice Numbers of a Few
Graphs

In this chapter, we present a few preliminary lemmas that will be used quite often.
We then answer three questions raised in [2]. Namely, we determine the sum choice
number of the Cartesian product P2 Â Pn, the Peterson graph, and the complete
bipartite graph K3,q.

2.1 Preliminary results

Let G be a graph, and for a given induced subgraph H, we denote by fH , CH , and
cH , the restrictions of the size function, etc. to H. Given a pair (G, f), we say that
a vertex v is forced by an f -assignment C if it receives the same color in any proper
C-coloring of G. For any vertex v ∈ V (G), we define the size function f v on G− v by
f v(w) = f(w) − 1, if w is adjacent to v, and f v(w) = f(w) otherwise. In addition,
we define

ρ(G) = min{χSC(G − v) + deg(v) + 1 : v ∈ V (G)},
τ(G) = min{size(f) : f is choosable, and 2 ≤ f(v) ≤ deg(v)∀v ∈ V (G)}.

We call size functions f for which f(v) = 1 or f(v) > deg(v) for some vertex v, simple
size functions, and all others, non-simple size functions. The following lemma is the
simplest special case of Lemmas 7 and 8 in [6].

Lemma 2.1. Let (G, f) be given.

(a) If f(v) = 1 for some vertex v ∈ V (G), then (G, f) is choosable if and only if
(G − v, f v) is choosable.

(b) If f(v) > deg(v) for some vertex v, then (G, f) is choosable if and only if
(G − v, fG−v) is choosable.
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Lemma 2.2. For any graph G, χSC(G) = min{ρ(G), τ(G)}. In particular, if G − v
is sc-greedy for every v ∈ V (G), then χSC(G) = min{GB(G), τ(G)}.

Proof. Define

α1 = min{size(f) : f is choosable and f(v) = 1 for some v ∈ V (G)},
α2 = min{size(f) : f is choosable and f(v) > deg(v) for some v ∈ V (G)}.

Clearly, χSC(G) = min{τ(G), α1, α2}. Let f be a choice function on G. Note first that
if f(v) = 1 for some v ∈ V (G), then f v is choosable by Lemma 2.1, and moreover,
size(f) = size(f v) + deg(v) + 1. If f(v) > deg(v) for some v ∈ V (G), then fG−v is
choosable by Lemma 2.1, and moreover, size(f) = size(fG−v) + f(v) ≥ size(fG−v) +
deg(v) + 1. Note further that both min{size(f v) : v ∈ V (G) and f v is choosable},
and min{size(fG−v) : v ∈ V (G) and fG−v is choosable} are equal to χSC(G − v). It
follows that α1 = α2 = ρ(G).

The preceding lemma allows for considerable simplification of many proofs. Simple
size functions can be thought of as somewhat trivial and bothersome cases that need
to be considered, and the lemma above is our attempt to dispense with much of the
trouble.

Lemma 2.3. Let G be a graph decomposable into blocks G1, . . . , Gk. Then

χSC(G) =
k∑

j=1

χSC(Gj) − k + 1.

In particular, a graph all of whose blocks are sc-greedy, is itself sc-greedy.

The lemma above follows immediately from Theorem 2.3 in [2]. An easy corollary
is that a graph obtained from an sc-greedy graph by appending a leaf is also sc-greedy.
In fact, if G′ is obtained from G by appending a leaf, then χSC(G′) = χSC(G) + 2.
For convenience, the following lemma summarizes some of the results of [2] and [6].

Lemma 2.4 ([2], [6]). Paths, cycles, complete graphs, and trees are sc-greedy.

2.2 Strings of cycles

The following theorem answers a question raised in [2]. Recall that the symbol Â

denotes the Cartesian product, and Pn is the path on n vertices.

Theorem 2.5. The graph P2 Â Pn is sc-greedy; that is, χSC(P2 Â Pn) = 5n − 2.

Proof. Label the vertices as in Figure 2.1. For any k = 1, . . . , n, let Gk be the
subgraph induced by vertices tk and bk, let Lk be the subgraph induced by vertices
t1, b1, . . . , tk, bk, and let Rk be the subgraph induced by vertices tk, bk, . . . , tn, bn.
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. . .

t1 t2 t3 tn−1 tn

b1 b2 b3 bn−1 bn

Figure 2.1: P2 Â Pn

The proof is by induction on n. The basis P2 is sc-greedy by Lemma 2.4. Now
assume that P2 Â Pk is sc-greedy for k < n. We will show G = P2 Â Pn is sc-greedy;
that is, its sum choice number is 5n− 2. Let f be a size function on G of size 5n− 3.
We must show that f is not choosable. It is easy to see that if size(fGk

) ≤ 2 for any
k = 1, . . . , n, then f is not choosable, so we may assume that size(fGk

) ≥ 3.
Assume that size(fGk

) ≤ 4 for some 1 < k < n. By the induction hypothesis, we
have χSC(Lk) = 5k − 2, and hence, size(fLk−1

) ≥ 5k − 6. Similarly, by the induction
hypothesis, χSC(Rk) = 5(n − k + 1) − 2, so size(fRk+1

) ≥ 5(n − k) − 1. Thus, if f
is choosable, we must have size(f) ≥ (5k − 6) + 4 + (5(n − k) − 1) = 5n − 3, and
hence, the above inequalities must be equalities. We will now define an uncolorable
f -assignment C. It is easy to check that since size(fGk

) ≤ 4, there exists an fGk
-

assignment C′ such that there are at most two distinct proper C′-colorings, c1 and c2,
of Gk. Let c1 = c2 if there is only one. Let g1 be a size function on Lk−1 defined
by g1(v) = f(v) − 1 if v ∈ V (Gk−1) and g1(v) = f(v) otherwise, and let g2 be a
size function on Rk+1 defined by g2(v) = f(v) − 1 if v ∈ V (Gk+1) and g2(v) = f(v)
otherwise. As size(g1) < χSC(Lk−1) and size(g2) < χSC(Rk+1), neither g1 nor g2 are
choosable, hence there exists a g1-assignment C1, and a g2-assignment C2, neither of
which have a proper coloring. Moreover, we may name the colors so that C ′(Gk) is
disjoint from C1(Lk−1) and C2(Rk+1). Define C by C = C ′ on Gk, C = C1 on Lk−1, and
C = C2 on Rk+1, except that we append c1(tk), c1(bk), c2(tk), and c2(bk) to C1(tk−1),
C1(bk−1), C2(tk+1), and C2(bk+1), respectively. Let c be a C-coloring. If c is proper,
then cGk

is equal to either c1 or c2. If cGk
= c1, then cLk−1

must be a proper C1-coloring
of Lk−1, and if cGk

= c2, then cRk−1
must be a proper C2-coloring of Rk−1, neither of

which exist. Hence size(fGk
) ≥ 5 for k = 2, . . . , n − 1.

If f(v1) = 1, then by Lemma 2.1, (G, f) is choosable if and only if (G− v1, f
v1) is.

However, G− v1 is sc-greedy by the induction hypothesis and the comment following
Lemma 2.3, hence χSC(G − v1) = 5n − 5 > 5n − 6 = size(f v1), so f is not choosable.
A similar argument applies if any of v2, vn−1, or vn has list size 1. Thus size(fG1) ≥ 4
and size(fGn

) ≥ 4, and hence, size(f) =
∑n

k=1 size(fGk
) ≥ 5(n−2)+2(4) = 5n−2.

In addition to the above result, we have determined by a lengthy case analysis that
P3 Â Pn has sum choice number GB−⌊n/3⌋ (see Chapter 3 for details). Moreover,
ideas very similar to those used in proof above show that if instead of 4-cycles, we
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were to use cycles of arbitrary and varying lengths greater than 3, the graph obtained
would still be sc-greedy. In fact, if instead of merely laying cycles end-to-end, we
were to lay them along a tree structure or along a cycle, the resulting graph would
still be sc-greedy. However, 3-cycles are somewhat more complicated to deal with.
Consider the graph Tr(t), pictured in Figure 2.2, obtained by laying t triangles end-
to-end. Formally, Tr(t) has vertex set {v1, . . . , vt+2} with vi adjacent to vj if and only
if 0 < |i − j| ≤ 2. Below we prove that Tr(t) is sc-greedy. A longer proof using the
same techniques can be used to show that for any minimum choice function f on
Tr(t), there exists an f -assignment forcing the vertices v1 and v2.

. . .

v1

v2

v3

v4

v5

v6

vt−1

vt

vt+1

vt+2

Figure 2.2: Tr(t)

Theorem 2.6. The graph Tr(t) is sc-greedy; that is, χSC(Tr(t)) = 3t + 3.

Proof. Let Rk denote the subgraph of Tr(t) which is induced by the vertices vk,. . .,vt+2.
We will prove by induction on t that Tr(t) is sc-greedy; that is, it has sum choice
number 3t + 3. The basis Tr(1) is a complete graph, and is therefore sc-greedy by
Lemma 2.4. Now assume that Tr(s) is sc-greedy for all s < t. Note that removing a
vertex from Tr(t) leaves a graph whose blocks are either paths or copies of Tr(s) for
values of s less than t. By the induction hypothesis and Lemma 2.3, such a graph is
sc-greedy. Thus by Lemma 2.2, it remains to show τ(Tr(t)) ≥ 3t + 3.

We must now show that any non-simple size function f of size 3t + 2 is not
choosable. Note that f(v1) = 2 since deg(v1) = 2. Let i0 be the least index greater
than 1 of a vertex having list size 2. This index must exist and be at most t, as
otherwise size(f) would exceed 3t + 2. As i0 ≤ t, Ri0 and Ri0+1 are defined. Note
that if there is a vertex vk, k ≤ i0, with f(vk) ≥ 4, then size(fRi0

) < χSC(Ri0). Thus
we may assume that f(v1) = f(vi0) = 2 and f(vk) = 3 for 1 < k < i0. We now
create an f -assignment C with no proper coloring. Let C(v0) = 12, and C(vi) = 123
for 1 < i < i0. Let C(vi0) be 34 if i0 is congruent to 1 modulo 3, and C(vi0) = 12
otherwise. It can be checked that no proper C-coloring can use color 3 on vi for each
i ≤ i0 congruent to 1 modulo 3. We will define C on Ri0+1 differently according to
the congruence of i0 modulo 3.

If i0 ≡ 0 (mod 3), let g be size function on Ri0 given by g(vi0+1) = f(vi0+1) − 1,
and let g agree with f elsewhere. Since size(g) < χSC(Ri0), g is not choosable. Let
C′ be an uncolorable g-assignment with C′(vi0) = 12 and 3 6∈ C′(vi0+1). Define C on
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Ri0+1 by letting C equal C′, except that we append color 3 to the list for vi0+1. Any
proper coloring cannot use color 3 on vi0−2, and hence must use color 3 on vi0+1, since
both colors 1 and 2 must be used on neighbors of vi0+1. Thus we must color Ri0 from
C ′, which is not possible.

If i0 ≡ 1 (mod 3), let g be the size function on Ri0+1 given by g(vi0+1) = f(vi0+1)−
1, g(vi0+2) = f(vi0+2)−1, and let g agree with f elsewhere. Since size(g) < χSC(Ri0+1),
g is not choosable. Let C′ be an uncolorable g-assignment such that color 4 does not
appear in C ′(vi0+1) nor in C ′(vi0+2). Define C on Ri0+1 by letting C equal C′, except
that we append color 4 to the lists for vi0+1 and vi0+2. Any proper coloring must not
use color 3 on vi0 , and hence must use color 4 there. So any proper coloring must not
use color 4 on vi0+1 and vi0+2, and hence, we must color Ri0+1 from C′, which is not
possible.

Finally, if i0 ≡ 2 (mod 3), let g be the size function on Ri0+1 given by g(vi0+1) =
f(vi0+1) − 2 and let g agree with f elsewhere. Since size(g) < χSC(Ri0+1), g is not
choosable. Let C′ be an uncolorable g-assignment such that neither color 1 nor color 2
appears on C′(vi0+1). Define C on Ri0+1 by letting C equal C′, except that we append
colors 1 and 2 to the list for vi0+1. A proper C-coloring must not use color 3 on vi0−1,
and hence, neither color 1 nor color 2 can be used on vi0+1, since both colors must be
used on its neighbors. Thus we must color Ri0+1 from C′, which is not possible.

2.3 Theta graphs and the Peterson graph

The authors of [2] asked about the choice number of the Peterson graph. To resolve
this question, we will need the following lemma. Recall that a theta graph, θk1,k2,k3 , is
a simple graph consisting of two vertices connected by three internally vertex disjoint
paths, having k1, k2, and k3 internal vertices, respectively, 0 ≤ k1 ≤ k2 ≤ k3. Recall
that we denote the greedy bound, the sum of the number of vertices and edges, by
GB, which in this case is 2(k1 + k2 + k3) + 5.

Theorem 2.7. χSC(θk1,k2,k3) =

{
GB−1, if k1 = k2 = 1 and k3 is odd
GB, otherwise.

Proof. Removing a vertex from a theta graph leaves either a tree or a cycle with
pendant edges, both of which are sc-greedy. Hence, by Lemma 2.2, it remains to
determine τ(θk1,k2,k3). If f is a non-simple size function with size(f) = GB−1 =
2(k1 + k2 + k3) + 4, then f ≡ 2, since the vertex set has size k1 + k2 + k3 + 2.
However, by a well-known result in [3], the only theta graphs that are 2-choosable
have k1 = k2 = 1 and k3 odd.

By Lemma 2.2, to show a graph G is sc-greedy, it suffices to show that for any
vertex v of G, G − v is sc-greedy, and then to show that there is no choosable non-
simple size function of size one less than the greedy bound. The same, of course,
applies to G− v, so we get a recursive procedure whereby we remove vertices from G
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until we get to graphs we know are sc-greedy, and at each stage we show that there
are no choosable non-simple size functions of size one less than the greedy bound.

The following will be important in the proof below: Odd cycles are not 2-choosable,
because the list assignment with all lists equal to 12 has no proper coloring. Moreover,
this implies that if we assign lists 12 to all vertices of an odd cycle but one, which
gets list 123, then color 3 must be used on that vertex.

Theorem 2.8. The Peterson Graph is sc-greedy; that is, it has sum choice number
25.

Proof. Denote the Peterson graph by P , let Q denote P minus a vertex, and let R
denote Q minus a vertex of degree 2. The greedy bound is 25 for P , 21 for Q, and
18 for R (see Figure 2.3).

P RQ

Figure 2.3: The graphs P , Q, and R of Theorem 2.8

Recall that attaching a leaf to an sc-greedy graph produces an sc-greedy graph
by the comment following Lemma 2.3. For any vertex v ∈ V (R), R − v is either an
sc-greedy theta graph or a cycle with pendant edges, and hence sc-greedy, and for any
vertex v ∈ V (Q) of degree 3, Q−v is an sc-greedy theta graph with pendant edges. It
remains to consider non-simple size functions of size one less than the greedy bound
on each of P , Q, and R.

The only non-simple size functions of size 17 on R assign list size 2 for all but one
vertex, hence there is a 5-cycle all of whose list sizes are 2, which is not colorable. The
only non-simple size functions of size 20 on Q assign list size 2 to all but two vertices
v and w, both having degree 3. It can be checked that there is a 5-cycle avoiding any
pair of adjacent vertices, and hence, if v and w are adjacent, then there is a 5-cycle
all of whose list sizes are 2, which is not colorable. If, on the other hand, v and w
are not adjacent, then they must be at distance two from each other. Let x denote
their common neighbor. It can be checked that there exist 5-cycles C1 and C2 with
v in C1, but not C2, w in C2, but not C1, and x not in either. Let f be a non-simple
size function of size 20, and create an f -assignment C with C(v) = 123, C(w) = 124,
C(x) = 34, and let any other vertex have list 12. These lists force color 3 on v and
color 4 on w. Hence, there is no proper C-coloring because C(x) = 34.

Thus, it remains to consider non-simple size functions of size 24 on P . Any such
size function assigns list size 3 to four vertices, and list size 2 to all others. Let H
denote the subgraph induced by the vertices assigned list size 3. We consider cases
according to the possibilities for H.
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If H is a path, P4, then it can be checked that there exists a 5-cycle all of whose
list sizes are 2, which is not colorable. The other possibilities are that H is: (a) a claw,
K1,3, (b) a 3-path union a vertex, P3 +K1 (c) two disjoint paths, K2 +K2, (d) a path
and two isolated vertices K2 +K1 +K1, or (e) 4 isolated vertices, K1 +K1 +K1 +K1.
See Figure 2.4 for lists showing in each case that the size function is not choosable.
The vertices of H are indicated with solid circles, and vertices with no list specified
can have any list. Note that by symmetry, these pictures give the only layouts of H
that need be considered.

(a) (b)

(c) (d) (e)

12 12

12 12

1212

12

12

12

12

12

12

12

12

12 12 12 1212

12 12 12

12 12 12

1434

34

34

34

123
123

123

123

123

123 123 123

123

124

124

124

124

124

125

345

Figure 2.4: The lists for the cases (a) through (e) of Theorem 2.8

For (a), the vertices with lists 123, 124, and 125 are each contained in different
5-cycles whose other vertices have lists 12, thus colors 3, 4, and 5, respectively, are
forced on those vertices, and hence, the top vertex can’t be colored. For (b), the
inside star-shaped cycle forces color 3 on the isolated vertex of H. From there it is
easy to check that these lists are not colorable.

For (c), color 3 is forced on both of the vertices with list 123 as both are contained
in 5-cycles whose other vertices all have list 12. As these vertices are adjacent, the
lists are not colorable. For (d), colors 3 and 4 are forced on the vertices with lists 123
and 124, respectively, as both vertices are contained in 5-cycles whose other vertices
have lists 12. The vertex with list 34 is adjacent to both of these vertices, and hence
can’t be colored.

For (e), we will have to consider two cases. First suppose a proper coloring uses
color 3 on the bottom right vertex. Then color 4 must be used on the inside vertex
adjacent to it with list 34, which implies that color 3 must be used on the other
inside vertex with list 34. Hence the inside vertices with list 123 and 124 cannot be
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colored with colors 3 and 4, respectively. However any proper coloring must use color
3 or color 4 on one of these two vertices, as otherwise the 5-cycle containing those
two vertices and three vertices with list 12 would not be colorable. Thus no proper
coloring chooses color 3 on the bottom right vertex, so we may regard it henceforth as
having list 12. From here we conclude that colors 3 and 4 are forced on the leftmost
vertex with list 123 and the topmost vertex with list 124, respectively, as both vertices
are contained in 5-cycles whose other vertices all have list 12. These two vertices have
a common neighbor with list 34, which then cannot be colored.

2.4 Complete bipartite graphs

Let (G, f) be given, and let C be an f -assignment. Let Y be an independent set in G,
and let X be the subgraph of G induced by the vertices not in Y . Let c be a proper
CX-coloring. For any y ∈ V (Y ), form a set A(c, y) from the distinct colors used by
c on N(y), the neighborhood of y. We will say c is blocked by Y if there is a vertex
y ∈ V (Y ) such that C(y) ⊂ A(c, y). In other words, c cannot be extended to a proper
C-coloring of all of G. We then have the following.

Lemma 2.9. Let (G, f) be given, let C be an f -assignment, Let Y be an independent
set in G, and let X be the subgraph induced by the vertices of G not in Y . Then C is
colorable if and only if there exists a proper CX-coloring that is not blocked by Y .

Proof. Let c̃ be a proper CX-coloring not blocked by Y . We need to define a proper
C-coloring c. For each y in V (Y ), let c(y) be any color in C(y)\A(c̃, y), which exists
since c̃ is not blocked by Y . Conversely, if every proper CX-coloring is blocked by Y ,
then there is no proper C-coloring, since for any C-coloring c, there exists a vertex
y ∈ V (Y ) for which there is no color in C(y) not used by c on a neighbor of y.

It then follows from the definition of choosability that f is choosable if and only if
for every f -assignment C, some proper CX-coloring is not blocked by Y . We can apply
these ideas to the computation of the sum choice number of the complete bipartite
graph Kp,q, p ≤ q. Let X and Y denote the partite sets of size p and q, respectively,
with V (X) = {x1, . . . , xp}. Let α(p, q) be the minimum size of a choosable f with
fY ≡ 2, let β(p, q) be the minimum size of a choosable f with f(y) ∈ {2, . . . , p} for
all y ∈ V (Y ), and let γ(p, q) be the minimum size over all other choosable f . Clearly,
χSC(Kp,q) is given by the minimum of these three values. By the ideas in the proof of
Lemma 2.2, γ(p, q) = χSC(Kp,q−1) + p + 1. We will use the blocking idea to compute
α(p, q) for a fixed p. Let f be a size function on Kp,q with fY ≡ 2, and let C be an
f -assignment. Since X is an independent set, the collection of all proper CX-colorings
can be identified with all p-tuples (a1, . . . , ap), with ai ∈ C(xi) for each i = 1, . . . , p.
Since N(y) = X for every y ∈ V (Y ), there exists a set Ac such that A(c, y) = Ac for
all y ∈ V (Y ). Thus a proper CX-coloring c is blocked if and only if C(y) ⊂ Ac for
some y ∈ V (Y ). The sum choice number of K2,q was determined in [2]. We provide
a somewhat similar proof here which will generalize to K3,q.
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Theorem 2.10 (Berliner et al.). The sum choice number of K2,q is given by

χSC(K2,q) = 2q + min{l + m : q < lm, with l,m ∈ N}.

Proof. We will compute α(2, q) and then show α(2, q) ≤ γ(2, q). Note that α(2, q) =
β(2, q). Fix positive integers l and m. Consider a size function f on K2,q with
f(x1) = l and f(x2) = m, and fY ≡ 2. Using the blocking idea, if C is an f -
assignment such that there exists a color a in C(x1) ∩ C(x2), then we get a proper
C-coloring by coloring x1 and x2 with a, since there can be no 2-set contained in {a}.
If the lists on X are disjoint, then there are a total of lm proper colorings from the
lists on X, and each vertex of Y can be used to block exactly one of them. Thus if
q < lm, there is always some proper coloring not blocked, whereas if q ≥ lm, there
exists a list assignment blocking every proper coloring. We conclude that α(2, q) =
2q + min{l + m : q < lm, with l,m ∈ N}.

We will now show α(2, q) ≤ γ(p, q) = χSC(K2,q−1) + 3 by induction. For the base
case, α(2, 1) = 5 = χSC(K2,0) + 3. Now assume the inequality holds for q − 1. Then
χSC(K2,q−1) = α(2, q−1). Hence, the inequality for q holds if and only if M ≤ N +1,
where M = min{l + m : q < lm} and N = min{l + m : q − 1 < lm}, with both
minimums taken over positive integers. Pick (l∗,m∗) giving the minimum, N . Then
q < l∗m∗ + 1 ≤ l∗(m∗ + 1). Hence, M ≤ l∗ + (m∗ + 1) = N + 1.

The proof above and Lemma 2.1 combine to give a characterization of choosability
for K2,q. Let u = |f−1(1) ∩ V (Y )| and d = |f−1(2) ∩ V (Y )|. It is straightforward to
show that f is choosable if and only if d < (f(x1) − u)(f(x2) − u).

Corollary 2.11. Explicitly, the sum choice number of K2,q is given by

χSC(K2,q) = 2q + 1 + ⌊
√

4q + 1⌋.

Proof. We compute α(2, q) explicitly. Suppose (l,m) = (l, l + t) for t > 1. Then if
q < lm, we have q < l(l + t) ≤ l2 + lt + t− 1 = (l + 1)(l + t− 1), hence the minimum,
α(2, q), must occur at (l,m) of the form (l, l) or (l, l + 1). Define functions g1(k) =
⌊(
√

4k + 1 − 1)/2⌋ and g2(k) = ⌊
√

k⌋. These are nondecreasing over N and satisfy
g1(l(l + 1)) = g2(l

2) = l for all l ∈ N. Suppose (l∗,m∗) gives the minimum, α(2, q).
Then l∗ must satisfy the inequality (l∗− 1)l∗ ≤ q < l∗(l∗ + 1), and applying g1 to this
gives l∗ = g1(q) + 1. Similarly, m∗ must satisfy the inequality (m∗ − 1)2 ≤ q < (m∗)2,
and applying g2 to this gives m∗ = g2(q)+1. Thus χSC(K2,q) = 2q +2+g1(q)+g2(q),
and this quantity is equal to 2q + 1 + ⌊√4q + 1⌋. To see this, let r = ⌊√4q + 1⌋
and s = ⌊√4q⌋. If r = s, it is easy to check that the two quantities are equal by
considering r odd and even separately. If r = s + 1, then 4q + 1 is an odd perfect
square, hence we need only check that the two quantities are equal for odd r, which
is easily seen to be true.

These same techniques can be used to find the sum choice number of K3,q. Let
f be a size function on K3,q satisfying f(y) ∈ {2, 3} for all y ∈ V (y), f(x1) = l,
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f(x2) = m, and f(x3) = n, with 0 < l ≤ m ≤ n, and let t = |f−1(3)∩V (Y )|. We will
denote this by f = (l,m, n : t)q. When we use this notation, it will be implicit that
f(y) ∈ {2, 3} for all y ∈ V (Y ). We provide an example here to motivate the proof
of Theorem 2.12. In the proof of Theorem 2.10, we considered any size function f
satisfying f(x1) = l, f(x2) = m and fY ≡ 2. For the sake of illustration, suppose
that l = 2 and m = 3. The only f -assignment of interest has disjoint lists on x1 and
x2, say C(x1) = 12 and C(x1) = 345. We could be certain that every proper coloring
is blocked, provided we assign the lists 13, 14, 15, 23, 24, 25 on Y . If any of these
lists is missing, then there exists a proper C-coloring. Hence, we conclude that f is
choosable if and only if q < 6.

For K3,q things are complicated by the fact that there are now list-assignments of
interest where the lists are not all disjoint. Consider the size function (4, 4, 4 : 0)q. If
we put lists 1234, 5678, and abcd on the vertices of X, it turns out that 16 2-sets is
the minimum number needed to block every proper coloring of X, namely all 2-sets
with one element coming from {1, 2, 3, 4} and the other from {5, 6, 7, 8}. If instead
we put lists 1234, 1256, and 3456 on X, then only 12 2-sets are needed to block every
proper coloring, namely 13, 14, 15, 16, 23, 24, 25, 26, 35, 36, 45, and 46. It turns out
that these X-lists are worst-possible in the sense that they require the least number
of 2-sets to block every proper coloring. That is, regardless of the collection of size
4 lists we put on X, if there are less than 12 vertices in Y , then there is always a
proper coloring of the entire graph. Hence we conclude that (4, 4, 4 : 0)q is choosable
if and only q < 12. By finding the worst possible lists for any l ≤ m ≤ n we get a
quantity, q∗(l,m, n), which gives the minimum value of q such that (l,m, n : 0)q is
not choosable. Thus we conclude that α(3, q) = 2q +min{l+m+n : q < q∗(l,m, n)},
with the minimum taken over l,m, n ∈ N. Certain properties of q∗(l,m, n) will allow
us to show that α(3, q) ≤ β(3, q), and a similar argument to the one used in Theorem
2.10 will show α(3, q) ≤ γ(3, q).

Theorem 2.12. The sum choice number of K3,q is given by

2q + min{l + m + n : q < q∗(l,m, n),with l,m, n ∈ N, l ≤ m ≤ n},

where q∗(l,m, n) is given by lm−⌊(l +m−n)2/4⌋ if n ≤ l +m, and by lm otherwise.

Proof. We will first compute α(3, q), then show β(3, q) = α(3, q), and finally show
that α(3, q) ≤ γ(3, q). Fix positive integers l,m, and n, with l ≤ m ≤ n. Consider the
size function f = (l,m, n : 0)q, and let C be an f -assignment. We will determine the
minimum number of 2-sets needed to block every proper CX-coloring. If there exists
a color a in C(x1)∩C(x2)∩C(x3), then we get a proper C-coloring by coloring x1, x2,
and x3 with a, since there can be no 2-set contained in {a}. So assume there is no
color in common to all the lists on X. In this case, CX has the following form:

C(x1) = a1 . . . ak1 b1 . . . bk2 c1 . . . ck4 ,
C(x2) = a1 . . . ak1 d1 . . . dk3 e1 . . . ek5 ,
C(x3) = b1 . . . bk2 d1 . . . dk3 f1 . . . fk6 .
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Colors with different names are distinct, and some of the ki may be zero. In order to
block each proper coloring, we require all 2-sets of the forms aibj, aidj, aifj, bidj, biej,
cidj, where i and j range over all possible values. The sets remaining unblocked are of
the form {ci, ej, fk}. To block these with the minimum number of 2-sets, add to the
collection all 2-sets of the forms ciej, cifj, or eifj, whichever gives the least number.
In total, a smallest collection of 2-sets must have k1n+ k2(m− k1)+ k3(l− k1 − k2)+
min{(l−k1−k2)(m−k1−k3), (l−k1−k2)(n−k2−k3), (m−k1−k3)(n−k2−k3)}, which
simplifies to min{δ(l,m, n, k1), δ(l, n,m, k2), δ(m,n, l, k3)}, where δ(x, y, z, w) = xy +
w(z − x − y + w).

We now minimize this over all possible CX-assignments to find the list assignment
requiring the least number of 2-sets to block every proper coloring. The minimum
number of 2-sets needed in this case will be denoted by q∗(l,m, n), which in fact gives
the minimum value of q such that (l,m, n : 0)q is not choosable. To determine a
formula for q∗(l,m, n), we determine the minimum of the expression in the previous
paragraph over all nonnegative integers k1, k2, and k3 satisfying l ≥ k1, k2 ≥ 0 and
m ≥ k3 ≥ 0. Note that δ(l,m, n, k1) is a quadratic function in k1, and a simple
analysis shows that the minimum occurs at k1 = ⌊(l + m − n)/2⌋ for n ≤ l + m and
k1 = 0 for n > l+m. A similar analysis applies to the other two delta quantities, and
it can be checked that the minimum obtained from each of the three delta quantities
is equal to lm− ⌊(l + m− n)2/4⌋ for n ≤ l + m and lm for n > l + m. This quantity
is q∗(l,m, n), and we conclude

α(3, q) = min{l + m + n : q < q∗(l,m, n), with l,m, n ∈ N, l ≤ m ≤ n}.
Now we show β(3, q) = α(3, q). Note that this is clearly true when q = 0. For

q > 1 we show that any size function g = (l′,m′, n′ : t)q of size α(3, q) − 1 with t > 0
is not choosable. We will assume on the contrary that g is choosable, and construct
a sequence of size functions hi = (li,mi, ni : t − i) for i = 0, . . . t, with h0 = g, such
that if hi is choosable, then so is hi+1, and then show that ht is in fact not choosable,
thereby contradicting our assumption that g is choosable. Let di = |h−1

i (2) ∩ V (Y )|.
We may assume that n′ > 1 as otherwise g must equal (1, 1, 1 : t)q, which is not
choosable for q > 0 and any t. Let i0 = n′ − m′ and let h0 = g. For i = 1, . . . i0, let
li = l′, mi = mi−1 + 1, and ni = n′. Let i1 = i0 + 1 if l′ = 1, and i0 if l′ > 1. If l′ = 1,
let li1 = 2, mi1 = mi0 , and ni1 = ni0 . For j ≥ 1, let li1+j = li1 , mi1+j = mi1 + ⌊j/2⌋
and ni1+j = ni1 + ⌈j/2⌉. Now, for l,m, n ∈ N one can easily compute that q∗(l,m, n)
is strictly greater than both q∗(l − 1,m, n) and q∗(l,m − 1, n), and if n < l + m,
then q∗(l,m, n) is strictly greater than q∗(l,m, n − 1). Note that we have arranged
it so that for each i = 1, . . . , t, li ≤ mi ≤ ni, and for i = i1, . . . , t, ni < li + mi. Let
qi = q∗(li,mi, ni). By assumption, h0 is choosable. Now let 1 < i < t and assume
hi is choosable. Then di < qi. Thus we have di+1 = di + 1 < qi + 1 ≤ qi+1, by
the strict montonicity of q∗ in each argument. Hence hi+1 is also choosable. Thus
ht = (lt,mt, nt : 0) is choosable and of size α(3, q) − 1, a contradiction.

Finally, we show by induction that α(3, q) ≤ γ(3, q) = χSC(K3,q−1) + 4. For
the base case, α(3, 1) = 7 = χSC(K3,0) + 4. Assume the inequality holds for q − 1.
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Then χSC(K3,q−1) = α(3, q − 1). Hence, the inequality for q holds if and only if
M ≤ N +2 where M = min{l+m+n : q < q∗(l,m, n)} and N = min{l+m : q−1 <
q∗(l,m, n)}, with both minimums taken over positive integers. Pick (l∗,m∗, n∗) giving

the minimum, N . Then q < l∗m∗−⌊ (l∗+m∗−n∗)2

4
⌋+1 ≤ l∗(m∗+1)−⌊ (l∗+(m∗+1)−(n∗+1))2

4
⌋.

Hence, M ≤ l∗ + (m∗ + 1) + (n∗ + 1) = N .

Corollary 2.13. Explicitly, the sum choice number of K3,q is given by

χSC(K3,q) = 2q + 1 + ⌊
√

12q + 4⌋.

Proof. We compute α(3, q) explicitly. Recall that for n ≥ l + m − 1, q∗(l,m, n) =
lm = q∗(l,m, l + m − 1), so we only need to consider n < l + m. Note that if l and
the sum m + n are each fixed constants, then lm − ⌊(l + m − n)2/4⌋ is maximized
when n − m is as close to zero as possible, and on the other hand, if m and the sum
l + n are each fixed constants, then lm − ⌊(l + m − n)2/4⌋ is maximized when n − l
is as close to zero as possible. Suppose that (l,m, n) = (l, l + c, l + d), for d ≥ c ≥ 0,
d ≥ 2. Let (l′,m′, n′) be equal to (l, l + 1, l + d − 1) if c = 0, (l + 1, l + d − 1, l + d)
if c = d, and (l + 1, l + c, l + d − 1) for any other value of c. Then (l′,m′, n′) satisfies
l′ + m′ + n′ = l + m + n, and also n′ − m′ < n − m if c = 0, and n′ − l′ < n − l for
any other value of c. Thus q∗(l′,m′, n′) > q∗(l,m, n). We conclude that to determine
the above minimum, it suffices to consider only those (l,m, n) of the forms (l, l, l),
(l, l, l + 1), and (l, l + 1, l + 1).

Define functions g1(k) = ⌊(
√

12k + 4 − 2)/3⌋, g2(k) = ⌊(
√

12k + 4 − 1)/3⌋, and
g3(k) = ⌊

√
12k/3⌋. Note that these functions are nondecreasing over N and satisfy

g1(q
∗(l, l+1, l+1)) = g2(q

∗(l, l, l+1)) = g3(q
∗(l, l, l)) = l for all l ∈ N. Let (l∗,m∗, n∗)

give the minimum. To find l∗, note that it must satisfy the inequality q∗(l∗−1, l∗, l∗) ≤
q < q∗(l∗, l∗ + 1, l∗ + 1), and applying g1 to this gives l∗ = g1(q) + 1. Similarly, m∗

must satisfy the inequality q∗(m∗ − 1,m∗ − 1,m∗) ≤ q < q∗(m∗,m∗,m∗ + 1), and
applying g2 to this gives m∗ = g2(q) + 2. Finally, n∗ must satisfy the inequality
q∗(n∗ − 1, n∗ − 1, n∗ − 1) ≤ q < q∗(n∗, n∗, n∗), and applying g3 to this gives n∗ =
g3(q) + 1. Thus χSC(K3,q) = 2q + 3 + g1(q) + g2(q) + g3(q), and this quantity is equal
to 2q + 1 + ⌊√12q + 4⌋. To see this, let r = ⌊√12q + 4⌋ and s = ⌊√12q⌋. If r = s it
is easy to check that the two quantities are equal by considering the cases r ≡ 0, 1, 2
modulo 3 separately. If r = s + 1, then 12q + 1 is a perfect square not divisible by 3,
hence we need only check that the two quantities are equal only for r ≡ 1, 2 modulo
3, which is easily seen to be true.
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Chapter 3

The Sum Choice Number of P3 Â Pn

We now compute the sum choice number of P3 Â Pn. We first present a number of
lemmas that will be used in the proof. Most are applicable to a variety of situations
other than the present one. The calculation of the sum choice number is a rather
long case analysis.

3.1 The configuration number

Suppose that v is a vertex of some graph. In what follows, if we write v in a place
where we would expect a graph, such as in the pair (v, f), then v refers to the graph
consisting of the vertex v alone. Let G be a graph. We will say R1, . . . Rn is a partition
of G if each Ri is an induced subgraph of G, their vertex sets are pairwise disjoint,
and

⋃
1≤i≤n V (Ri) = V (G). Furthermore, if S is a subgraph of G, we use SC to denote

G − S.
Let G be a graph, and let S and T be disjoint induced subgraphs of G. We define

the size function fT
S by

fT
S (v) = f(v) − degT (v),

for each v ∈ V (S). If S = TC , then we will omit it from the notation and write fT .
Consider a pair (G, f), and let S be an induced subgraph of G. The configuration
number of the pair (S, f), denoted γ(S, f), is the least integer k such that there exists
an f -assignment C on G from which there are exactly k distinct proper CS-colorings.
Clearly, (G, f) is choosable if and only if γ(G, f) > 0. In a sense, γ(G, f) measures
how far (G, f) is from not being choosable.

As an example, γ(P2, f) = 2 when f ≡ 2, as the f -assignment assigning the
same list to each vertex has exactly two proper colorings, and one can easily convince
oneself that there is no f -assignment which only has one proper coloring (see Figure
3.1a). On the other hand, consider (C4, f) with f ≡ 2 and the f -assignment shown
in Figure 3.1b. Let S be the subgraph induced by the two vertices assigned the list
12. These lists show that γ(S, f) ≤ 1. This is because any coloring of C4 assigning
color 1 to the top vertex of S and color 2 to the bottom is not proper, meaning any
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proper coloring of C4 must assign color 2 to the top vertex of S and color 1 to the
bottom. In fact, it is easy to show that f is choosable, so γ(S, f) = 1. On the other
hand, γ(S, fS) = 2, as in (a). The difference here between γ(S, f) and γ(S, fS) is that
the former considers the influence of all the lists of C4 on the lists of S, whereas the
latter is restricted purely to S.

(a) (b)

12

12

12

12

13

23

Figure 3.1: Graphs for the first example

A particularly important case is γ(S, fS) = 1. In this case, there is some f -
assignment from which there is exactly one proper coloring of S. This generalizes
the idea of a single vertex receiving list size 1. Recall that Lemma 2.1a states that
if f(v) = 1, then (G, f) is choosable if and only if (G − v, f v) is. We will generalize
this below (Lemma 3.3) to show that if γ(S, fS) = 1, then (G, f) is choosable if and
only if (SC , fS) is (provided S fits together nicely with SC). For example, consider
P3 Â P3 with the size function f shown in Figure 3.2. Let R denote the subgraph
induced by the three vertices on the right, and let L denote the subgraph induced by
the remaining six vertices. The list assignment given on the right shows γ(R, fR) ≤ 1,
and in fact γ(R, fR) = 1, as (R, fR) is choosable. No proper coloring from these lists
can use color 4 or 5 on any of the middle three vertices. Removing colors 4 and 5
from those middle vertices leaves us with familiar lists on L which have no proper
coloring. In essence, (P3 Â P3, f) is choosable if and only if (L, g) is choosable where
g ≡ 2.

1

2

22

2

2

3

3

3 4

12

13

23

45

45134

234

125

Figure 3.2: An example of Lemma 3.2

Consider now what happens when instead of γ(S, fS) = 1, we only have γ(T, fS) =
1, for some induced subgraph T of S. For example, consider P3 Â P4 with the size
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function f shown in Figure 3.3. Let S be the subgraph induced by the rightmost two
columns, and let T be the subgraph induced by the third column from the left. The
f -assignment C shown on the right is such that every proper CS-coloring has only one
possible restriction to T , namely colors 4, 6, and 5 must be used on the top, middle
and bottom vertices, respectively, of T . This shows that γ(T, fS) ≤ 1, and in fact,
one could check that γ(T, fS) = 1. Thus, colors 4, 5, and 6 cannot be used on the
second column from the left, and so SC must be colored from familiar lists which
have no proper coloring. That is, γ(SC , fT

SC ) = 0, and so γ(P3 Â P4, f) = 0, implying
that f is not choosable.

2

2

2 2 2

2

2

2

3

3

3

3 12

13

23

45
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4656

56

126

135

234

456

Figure 3.3: A second example of Lemma 3.2

However, given (G, f) with S an induced subgraph of G and T an induced sub-
graph of S satisfying γ(T, fS) = 1, it is not always true that γ(SC , f) = γ(SC , fT

SC ).
Lemma 3.2 shows, however, that γ(SC , f) ≤ γ(SC , fT

SC ). As an example, consider
P3 Â P3 with the size function f shown in Figure 3.4. Let S be the subgraph induced
by the right two columns, let T1 be the subgraph induced by the middle column, and
let T2 be the subgraph induced by the bottom two vertices of the middle column. It
is not hard to check that γ(T1, fS) = γ(T2, fS) = 1. We have γ(SC , fT1

SC ) = 0, and

so γ(SC , f) = 0. However, γ(SC , fT2

SC ) = 1, showing that γ(SC , f) < γ(SC , fT2

SC ). We
lose equality here because there is a subset of S, namely the bottom two rows of the
two right columns (call it S ′), which satisfies that γ(T2, fS′) = 1. That is, for equality
to hold, we would need some sort of minimality condition on S with respect to T2.

On a slightly different note, consider P3 Â P3 with the size function f shown in
Figure 3.5. Let L denote the subgraph induced by the three left vertices, let M denote
the subgraph induced by the three middle vertices, and let R denote the subgraph
induced by the three right vertices. The list assignment given on the right shows that
γ(M, fM) ≤ 2, and in fact Lemma 3.6 shows γ(M, fM) = 2. The two proper colorings
of M use either colors 4, 5, and 4, or colors 5, 4, and 5. If the first coloring is used,
then R cannot be properly colored, and if the second coloring is used, then L cannot
be properly colored. In summary, we have γ(M, fM) = 2, (R, fM

R ) is not choosable,
and (L, fM

L ) is not choosable. These facts together imply that (P3 Â P3, f) is not
choosable, and more specifically, that γ(M, f) = 0. We can generalize this idea to
show that if γ(M, fM) = m, and there are graphs H1, . . .Hp attached nicely to M ,
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Figure 3.4: A third example of Lemma 3.2

satisfying that fM
Hi

is not choosable, then γ(M, f) = max{m − p, 0}. This is Lemma
3.4.
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Figure 3.5: An example of Lemma 3.4

3.2 A few general lemmas

We will often implicitly use the contrapositive of the following lemma.

Lemma 3.1. If (G, f) is choosable, then (S, fS) is choosable for every induced sub-
graph S of G.

Proof. Let C′ be an fS-assignment. Any extension C of C′ to all of G has a proper
coloring c, by hypothesis. The restriction of c to S is thus a proper C-coloring of
S.

The following lemma is the formal statement of what we mentioned in the second
and third examples.

Lemma 3.2. Let (G, f) be given, and let S be an induced subgraph of G, and T an
induced subgraph of S. Suppose that γ(T, fS) = 1, and further, suppose that each
vertex of SC is adjacent to at most one vertex of T . Then γ(SC , f) ≤ γ(SC , fT

SC ).
Equality holds if S = T .
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This Lemma will be used extensively in the calculation of χSC(P3 Â Pn). We now
prove a more general statement from which Lemma 3.2 follows. The condition on the
vertices of SC in the following lemma means that no vertex of SC is adjacent to two
or more vertices of T that are colored the same by c. This is what we meant earlier
when we said the graphs had to “fit together nicely.” It is clearly true when each
vertex of SC is adjacent to at most one vertex of T .

Lemma 3.3. Let (G, f) be given, and let S be an induced subgraph of G. Set R =
SC, and let T be an induced subgraph of S. Let C be an fS-assignment from which
there is exactly one proper CT -coloring c. Suppose further that for each v ∈ V (R),
|{c(w) : w ∈ V (T ), vw ∈ E(G)}| = degT (v). Then γ(R, f) ≤ γ(R, fT

R ). If, in fact,
S = T and γ(T, fT ) = 1, then γ(R, f) = γ(R, fT

R ).

Proof. Let v1, . . . , vk denote the vertices of T , and let C′ be an fT
R -assignment having

exactly γ(R, fT
R ) proper colorings. We can name the colors so that c(vi) 6∈ C′(w) for

any vi ∈ V (T ), w ∈ V (R). Define an f -assignment D by D(vi) = C(vi) for vi ∈ V (T ),
and D(w) = C′(w) ∪ {c(vi) : viw ∈ E(G)} for w ∈ V (R). By hypothesis this is an
f -assignment, and further, DR must be colored from C′. Thus, γ(R, f) ≤ γ(R, fT

R ).
Now assume that S = T , and let F be an f -assignment. We will show that

there exist at least γ(R, fT
R ) proper F -colorings of G, so that γ(R, f) ≥ γ(R, fT

R ).
Since γ(T, fT ) = 1, there exists at least one proper FT coloring c′ of T . For each
w ∈ V (R), let Qw denote the set {c′(vi) : viw ∈ E(G)}. Let g be a size function on
R defined by g(w) = f(w)− |Qw|. Note that g(w) ≥ fT

R (w) for all w ∈ V (R). Let F ′

be the g-assignment given by F ′(w) = F(w)\Qw. By hypothesis and the fact that
g(w) ≥ fT

R (w) for all w ∈ V (R), there exist at least γ(R, fT
R ) proper F ′-colorings of

R, and hence at least γ(R, fT
R ) proper F -colorings of G.

The following lemma is the formal statement of what we mentioned in the fourth
example.

Lemma 3.4. Let (G, f) be given, and let R0, . . . Rk be a partition of G. Set m =
γ(R0, fR0), and set p = min{k,m}. Let C be an fR0-assignment for which there
exist exactly m proper C-colorings, c1, . . . , cm. Suppose that for each i = 1, . . . p there
exists an index j(i) such that for every v ∈ V (Rj(i)), |{ci(w) : vw ∈ E(G) and w ∈
V (R0)}| = degR0

(v), and the indices satisfy that if i1 6= i2, then j(i1) 6= j(i2). Suppose

further that g = fR0
Rj(i)

is not choosable, for each i = 1, . . . p. Then γ(R0, f) ≤
max{m − k, 0}.

Proof. We will define an f -assignment D such that there are at most max{m− k, 0}
proper DR0-colorings. Let D(v) = C(v) for v ∈ V (R0). By hypothesis, for each
i = 1, . . . p there exists a g-assignment Di which has no proper coloring. We can
name the colors so that ci(w) 6∈ Dj(i)(v) for any w ∈ V (R0) and v ∈ V (Rj(i)). Now
for each i = 1, . . . , p, and for every v ∈ V (Rj(i)) define D(v) to be Dj(i)(v) ∪ {ci(w) :
vw ∈ E(G) and w ∈ V (R0)}. Any D-coloring d which restricts to ci on R0, for some
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1 ≤ i ≤ p cannot be proper as then Rj(i) would have to be properly colored from
Dj(i). Hence, there are at most max{m − k, 0} proper DR0-colorings.

There are two cases where we will typically use this result. The first is with
k = m = 2, as in the example given earlier. The second is with k = 1 and m = 1 or
2. When m = 1 and k > 0, the lemma shows in fact that (G, f) is not choosable. We
now give one more technical lemma dealing with configuration numbers.

Lemma 3.5. Let (G, f) be given. Let S be an induced subgraph of G. Let T and
T ′ be induced subgraphs of S and SC, respectively, and define T = T ∪ T ′. Suppose
γ(T, fS) ≤ m and γ(T ′, fSC ) ≤ m′. Then γ(T, f) ≤ min{m,m′}

Proof. Let C be an fS-assignment having exactly m proper colorings, and let C′ be
an fSC -assignment having exactly m′ proper colorings, with the colors named so that
C(v) ∩ C′(w) = ∅ for any v ∈ V (S) and w ∈ V (SC). Clearly the f -assignment D
given by D(v) = C(v) for v ∈ V (S), and C(w) = C ′(w) for w ∈ V (SC) has exactly
min{m,m′} proper colorings.

Lemma 3.6. Let f be a choice function on Pn. If size(f) = 2n−1, then γ(Pn, f) = 1,
and if size(f) = 2n, then γ(Pn, f) = 2.

Proof. Denote the vertices of Pn by v1, . . . vn with vi adjacent to vi+1, for i = 1, . . . , n−
1, and let S denote the subgraph induced by the vertices v1, . . . vn−1. The proof of
each statement is by induction on n. The base case n = 1 is easy for both statements.
Assume that γ(Pn−1, g) = 1 for any choice function g of size 2n−3, and γ(Pn−1, h) = 2
for any choice function h of size 2n−2. Let f be a choice function on Pn. If f(vn) = 1,
then by Lemma 3.2, γ(Pn, f) = γ(S, f vn), and by the induction hypothesis this is equal
to 1 if size(f) = 2n − 1, and 2 if size(f) = 2n. If size(fS) = 2n − 3, then by Lemma
3.2, γ(Pn, f) = γ(vn, f

S) = fS(vn), and this is equal to 1 if size(f) = 2n− 1, and 2 if
size(f) = 2n.

Recall that Pn is sc-greedy with sum choice number 2n−1, so the only other case to
consider is when size(f) = 2n and f(vn) = 2. First, we can construct an f -assignment
having exactly two proper colorings as follows. By the induction hypothesis there
exists an fS-assignment C′ having exactly two proper colorings c1 and c2. We can
extend this to an f -assignment C by defining C(vi) = C′(vi) for i < n, and C(vn) =
{c1(vn−1), a}, where a is any color not equal to c1(vn−1), if c1(vn−1) = c2(vn−1), and
a = c2(vn−1), otherwise. Clearly there exist exactly two proper C-colorings. On
the contrary, let D be any f -assignment, and let d be a proper DS-coloring. Since
f(vn) = 2, there is some color on D(vn) not equal to d(vn−1). Hence, we can extend d
to a proper coloring of Pn. By the induction hypothesis, there exist at least two proper
DS-colorings. Hence, any f -assignment must have at least two proper colorings.

The proof above demonstrates our approach to determining the sum choice number
of P3 Â Pn. There are several cases that are easily dealt with by Lemma 3.2, and a
subtler case that must be handled with more care.
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3.3 The calculation of χSC(P3 Â Pn)

First, we need some notation. We label the vertices of P3 Â Pn as in Figure 3.6. Let
Hi denote the subgraph induced by the vertices of column i, namely, v1,i, v2,i, and
v3,i. Let Ti denote the top two vertices of Hi, the subgraph induced by v1,i and v2,i,
and let Bi denote the bottom two vertices of Hi, the subgraph induced by v2,i and
v3,i. Let Lk denote the subgraph induced by the vertices {vi,j : j ≤ k}, that is, all the
vertices to the left of and including column k. Let Rk denote the subgraph induced
by the vertices {vi,j : j ≥ k}, that is, all the vertices to the right of and including
column k. Note that Rk consists of n − k + 1 columns in total.

. . .

v1,3 v1,n−1 v1,n

v2,1 v2,2 v2,3 v2,n−1 v2,n

v3,1 v3,2 v3,3 v3,n−1 v3,n

v11 v12

Figure 3.6: P3 Â Pn

A size function on P3 Â Pn is denoted by an array as shown below.

f(v1,1) f(v1,2) . . . f(v1,n)
f(v2,1) f(v2,2) . . . f(v2,n)
f(v3,1) f(v3,2) . . . f(v3,n)

For example, the size function f which assigns 2 to all vertices of P3 Â P4 except
those of H4 which get list size 3 is shown below, along with a typical list assignment
C (which is displayed in an analogous way).

2 2 2 3
2 2 2 3
2 2 2 3

12 12 23 123
12 12 23 123
12 12 34 134

To indicate fHi
we will use the notation (f(v1,i), f(v2,i), f(v3,i)), so that in the example

above, fH4 = (3, 3, 3). We will also display list assignments in a similar way, so that
in the example above CH4 = (123, 123, 134). We will write as a shorthand fi = fHi

and f i = fHi .
Before proceeding to the theorem, we provide an example to demonstrate the

techniques we will use repeatedly in the proof. Refer to the diagram in Figure 3.7.
Consider (P3 Â P2, f) with size(f1) = 6, f(v1,2) = 1 and size(fB2) = 6, and suppose
that f is choosable. This is shown in the leftmost “graph” of the diagram. We
endeavor to show that γ(H2, f) = 1. By Lemma 3.2, it suffices to consider g = f v1,2 .
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→ →
1

3
5

56
6

Figure 3.7: An example of a typical reduction in the proof of Theorem 3.7

Notice that size(g1) = 5 and size(gB2) = 5. This is indicated in the middle graph
of the diagram. The arrow indicates the use of Lemma 3.2. Since size(g1) = 5, by
Lemma 3.6, γ(H1, g1) = 1, and hence by Lemma 3.2, it suffices to consider h = gH1 .
Notice that size(hB2) = 3. This is indicated by the right graph of the diagram, and
again, the arrow indicates a use of Lemma 3.2. Since size(hB2) = 3, by Lemma 3.6
we have γ(hB2 , B2) = 1. Thus, it follows from Lemma 3.5 that γ(H2, f) = 1. The
proof contains a large number of reductions of this sort, so for the sake of brevity,
we will omit reference to Lemmas 3.2, 3.5, and 3.6. Diagrams such as Figure 3.7 are
provided to aid understanding, and in fact, convey the ideas better than the text of
the proof.

Theorem 3.7. The sum choice number of P3 Â Pn is GB−⌊n/3⌋. Explicitly, it is
8n − ⌊n/3⌋ − 3.

Proof. We first prove a few claims.

Claim 1. Suppose that γ(Tn−1, fLn−1) = 1 and γ(Bn−1, fLn−1) = 1. If f(vi,n) = 1 for
i = 1, 2, or 3, or f(vi,n) = f(vi+1,n) = 2 for i = 1 or 2, then f is not choosable.

Proof. It suffices to show one of g = fTn−1 and h = fBn−1 is not choosable, and indeed
this is true as g(vi,n) = 0 if f(vi,n) = 1 for i = 1 or 2, h(v3,n) = 0 if f(v3,n) = 0, and
further if f(v1,n) = f(v2,n) = 2, then g(v1,n) = g(v2,n) = 1, and if f(v2,n) = f(v3,n) =
2, then g(v2,n) = g(v3,n) = 1.

In Claim 2 we state the consequences of the preceding lemmas that are used
repeatedly throughout the proof. Moreover, we will use Lemma 3.6 implicitly when
n ≤ 3. In particular, γ(P3, f) = 2 when size(f) = 6, γ(P3, f) = 1 when size(f) = 5,
and because P3 is sc-greedy, γ(P3, f) = 0 when size(f) ≤ 4.

Claim 2. Let f be a size function on P3 Â Pn, and let g be a choice function on
P3 Â Pn. Let j ∈ N such that 1 ≤ j ≤ n − 1.

(a) If γ(Hj, fLj
) = 1 and size(fRj+1

) ≤ χSC(Rj+1) + 2, then f is not choosable. If
γ(Tj, fLj

) = 1 or γ(Bj, fLj
) = 1, and size(fRj+1

) ≤ χSC(Rj+1)+ 1, then f is not
choosable.
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(b) If γ(Hj+1, fRj+1
) = 1 and size(fLj

) ≤ χSC(Lj) + 2, then f is not choosable. If
γ(Tj+1, fRj+1

) = 1 or γ(Bj+1, fRj+1
) = 1, and size(fLj

) ≤ χSC(Lj) + 1, then f is
not choosable.

(c) If γ(Hn−1, gLn−1) = 1 and size(gn) = 8, then γ(Hn, g) = 1. If γ(Tn−1, gLn−1) = 1
or γ(Bn−1, gLn−1) = 1, and size(gn) = 7, then γ(Hn, g) = 1.

(d) If size(gn) = 6, and size(gLn−1) ≤ χSC(Ln−1)+2, then γ(Hn, g) = 1. If size gTn
=

4, and size(gLn−1) ≤ χSC(Ln−1)+1, then γ(Tn, g) = 1. The same statement holds
with Tn replaced by Bn.

(e) If size(gn) = 5, then γ(Hn, g) = 1.

Proof. Statement (e) follows directly from Lemma 3.6. For each of (a) through (d) we
will prove only the first statement. Essentially the same proof works for the second
statement. For (a), since γ(Hj, fLj

) = 1, it suffices to consider h = f j
Rj+1

. However,

size(h) < χSC(Rj+1), so g is not choosable. The proof of (b) is similar to the proof
of (a). For (c), since γ(Hn−1, gLn−1) = 1, it suffices to consider h = gn−1

n . However,
size(h) = 5, so γ(Hn, h) = 1. For (d), size(gn

Ln−1
) < χSC(Ln−1), so gn

Ln−1
is not

choosable. Thus, by Lemma 3.4, γ(Hn, g) = 1.

Claim 3. Let f be a minimum choice function on P3ÂP2. Then γ(Ti, f) = γ(Bi, f) =
1, for i = 1, 2.

Proof. By symmetry, it suffices to prove the result for (T2, f) and (B2, f). Recall that
χSC(P3 Â P2) = 13, by Theorem 2.5. We have four cases to consider, size(f2) = 5,
6, 7, and 8. Note that these are the only cases to be considered, since for (G, f)
to be choosable, we require both size(f1) and size(f2) to be at least 5. The cases
size(f2) = 5, 6, and 8 are immediately taken care of by Claim 2 parts (e), (d), and
(c), respectively. For size(f2) = 7, we have a few cases to consider.

First suppose f(vi,1) = 1 for some i = 1, 2, or 3. We will show that γ(H2, f) = 1.
Set g = f vi,1 and H = H1 − vi,1. It suffices to show that γ(H2, g) = 1. Since
size(g2) = 6, we have γ(H2, g2) = 2. Further, size(g2

H) = 1 if i = 2 and 2 otherwise,
so (H, g2

H) is not choosable. Thus, by Lemma 3.4, γ(H2, g2) = 1 (see Figure 3.8).

→→
1

1 3
45

56 67 7

Figure 3.8: The two possibilities where f(vi,1) = 1

Next suppose f(vi,2) = 1 for some i = 1, 2, or 3. We will again show that
γ(H2, f) = 1. Set g = f vi,2 , and set H = G−vi,2. It suffices to show that γ(H, g) = 1.
Note that size(g1) = 5, so γ(H1, g1) = 1, and thus it suffices to show that γ(H, g1

H) =

30



→ → → →
1

1 2
3

45
5

5
6

6 66

Figure 3.9: The two possibilities where f(vi,2) = 1

1. This is easily seen to be true as size g1
H is equal to 2 if i = 2 and 3 otherwise (see

Figure 3.9).
Thus, it remains to consider f1 = (2, 2, 2), and f2 = (2, 2, 3), or (2, 3, 2). By

symmetry we need not consider f2 = (3, 2, 2). Consider first f2 = (2, 2, 3). By

Claim 2(e), γ(T2, f) = 1. Now consider the f -assignment
13 23
12 12
23 123

. Any proper coloring

from these lists must use colors 2 and 1 on v2,1 and v2,2, respectively. Thus, color 3
must be used on v3,1, and hence color 2 must be used on v3,2. These lists thus show

that γ(B2, f) = 1. Finally, consider f2 = (2, 3, 2), and the f -assignment
13 23
12 123
23 13

. By

assuming color 1 is used on v2,2 and tracing through the possibilities, one can easily
conclude that no proper coloring uses color 1 on v2,2, and similarly for color 2. Hence,
color 3 must be used on v2,2, which then implies that colors 2 and 1 must be used on
v1,2 and v3,2, respectively. Thus, γ(H2, f) = 1.

Claim 4. Let f be a choice function on G = P3 Â P3 − v1,1. Suppose fB1 ≡ 2 and
size(f2) = size(f3) = 7. Let C′ be a fB1 assignment with |C′(v2,1) ∩ C′(v3,1)| = 1.
Then there exists an f -assignment whose restriction to B1 equals C′, for which there
is exactly one possible restriction of any proper coloring to Tn, and an f -assignment
whose restriction to B1 equals C′, for which there is exactly one possible restriction of
any proper coloring to Bn.

Proof. We may assume that C′(v2,1) = 13 and C′(v3,1) = 23. Suppose first that
f(v1,2) = 1. Set g = f v1,2 . Note that size(g3) = 6, so γ(H3, g) = 2. Set h = g3

B2
.

By Lemma 3.4, if we can show that there exists an h-assignment agreeing with C ′

on B1, and having no proper coloring, then we may conclude γ(H3, f) = 1. Since
size(hB2) = 3, there exists an hB2-assignment having exactly one proper coloring c,
and we may name the colors so that c satisfies c(vi,2) = i− 1, for i = 2, 3. Combining
this with C′ on B1, we see there is no proper coloring.

Suppose next that f(v2,2) = 1. We will define an f -assignment F such that any
proper F -coloring has exactly one possible restriction to H3. Let c be a proper F -
coloring. Define F(v2,2) = 1, and let FB1 = C′. Then c(v2,2) = 1, c(v2,1) = 3, and
c(v3,1) = 2. Let H be the subgraph induced by the vertices v1,2, v3,2, and the vertices
of H3. Notice that H is a path on five vertices, and as shown above, γ(HC , fHC ) = 1.
Let g = fHC

. It suffices to show that γ(H3, g) = 1. However, since size(g) = 9, this
follows by Lemma 3.6.

Suppose now that f(v3,2) = 1. We will define an f -assignment F such that any
proper F -coloring has exactly one possible restriction to H3. Let c be a proper F -
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coloring. Define F(v3,2) = 2, and let FB1 = C′. Then c(v3,2) = 2, c(v3,1) = 3, and

c(v2,1) = 1. Let H = T2 ∪ H3. As shown above γ(H, fH) = 1. Let g = fHC

. It
suffices to show that γ(H3, g) = 1. This follows from Lemma 3.4 since size(g3) = 6
and size(gT2) = 4, so γ(H3, g3) = 2 and g3

T2
is not choosable.

Next suppose that f(vi,3) = 1 for some i = 1, 2, or 3. Set g = f vi,3 . Then
size(gH2) = 6, so γ(H2, g) = 2. Thus, there exists a g2-assignment F ′ having exactly
two proper colorings c1 and c2, and further we may assume the colors are named so
that c1(v2,2) = i− 1 for i = 2, 3. Extend F ′ to a g-assignment by defining F = F ′ on
H2, F = C′ on B1, and letting F(vi,3) = F ′′(vi,3) ∪ c2(vi,2) for i = 1, 2, 3, where F ′′

is a gH2
H3

-assignment having exactly one proper coloring, with colors named so that
c2(vi,2) 6∈ F(vi,3) for i = 1, 2, 3. Note that F ′′ exists as size(g2

3) = 5. Then any proper
F -coloring must color H3 from F ′′.

The possibilities remaining for f2 are (3, 2, 2), (2, 3, 2), and (2, 2, 3). For the first
case, let F ′ be a fB2

3 -assignment having exactly one proper coloring. We may name
the colors so that 2 6∈ F ′(v2,3) and 1 6∈ F ′(v3,3). Define an f -assignment F by
FB1 = C′, F(v2,2) = 12, F(v3,2) = 12, F(v1,3) = F ′(v1,3), F(v2,3) = F ′(v2,3) ∪ {2},
and F(v3,3) = F ′(v3,3) ∪ {1}. Then any proper F -coloring c must satisfy c(v2,2) = 2
and c(v3,2) = 1, and thus H3 must be colored from F ′. For the other two possibilities

consider the following fB1∪H2-assignments:
13

13 123
23 12

, and
23

13 12
23 123

. For the first case no

proper coloring can use color 1 on v2,2, so H2 must be colored from (13, 23, 12). In the
second case no proper coloring can use color 2 on v3,2, so H2 must be colored from
(23, 12, 13). Notice that these list assignments are permutations of each other. Thus,
it suffices to consider the list assignment E = (23, 12, 13) on H2, and to look at the
possibilities for list assignments on H3.

The list assignment (12, 123, 23) on H3 combined with E is such that any proper
coloring c must satisfy c(v1,3) = 1, c(v2,3) = 3, and c(v3,3) = 2. The list assignment
(123, 12, 23) on H3 combined with E is such that any proper coloring c must satisfy
c(v1,3) = 2 and c(v2,3) = 1. The list assignment (xxx, 23, 23) on H3 combined with
E is such that any proper coloring c must satisfy c(v2,3) = 3 and c(v3,3) = 2. The
list assignment (13, 12, 123) on H3 combined with E is such that any proper coloring
c must satisfy c(v2,3) = 2 and c(v3,3) = 1. The list assignment (13, 13, xxx) on H3

combined with E is such that any proper coloring c must satisfy c(v1,3) = 1 and
c(v2,3) = 3. An xxx indicates that the value of that list is irrelevant.

23 13
12 123
13 23

23 123
12 12
13 23

23 xxx
12 23
13 23

23 13
12 12
13 123

23 13
12 13
13 xxx

Claim 5. Let f be a choice function on P3 Â Pn . Suppose that γ(Tn−1, g) = 1 and
γ(Bn−1, g) = 1 for any minimum choice function g on Ln−1.
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(a) Suppose size(fLn−1) = χSC(Ln−1) + 1 and size(fn) = 7. If fn 6= (2, 3, 2), then at
least one of γ(Tn, f) and γ(Bn, f) equals 1. On the other hand, if fn = (2, 3, 2),
then any fn-assignment of the form C′ = (1a1, 13a2, 3a3), can be extended to an
f -assignment C satisfying that any proper C-coloring c must have c(v1,n) = a1.
By symmetry, the same statement holds if we replace v1,n by v3,n.

(b) Suppose size(fLn−1) = χSC(Ln−1) and size(fn) = 8. If fn 6= (2, 4, 2), then at
least one of γ(Tn, f) and γ(Bn, f) equals 1.

Proof. We will consider statement (a) first. To start, suppose f(vi,n) = 1 for some
i = 1, 2, or 3. Set g = f vi,n . Suppose first that i = 1. Then size(gLn−1) = χSC(Ln−1),

so by hypotheses, γ(Bn−1, gLn−1) = 1. We have size(g
Bn−1

Bn
) = 3, so γ(Bn, g

Bn−1

Bn
) = 1,

and hence γ(Hn, f) = 1 (see Figure 3.10a). If i = 3, the same argument works with
Bn−1 and Bn replaced by Tn−1 and Tn, respectively. If i = 2, then there are three
(choosable) possibilities for fn, (2, 1, 4), (4, 1, 2), and (3, 1, 3). However, (2, 1, 4) is
not possible, as then γ(Tn, fTn

) = 1, and hence (Ln−1, f
Tn

Ln−1
) is not choosable (see

Figure 3.10b). Similarly, (4, 1, 2) is not possible. If fn = (3, 1, 3), then g(v1,n) =
g(v3,n) = 2, and size(gLn−1) = χSC(Ln−1). Thus, by hypothesis γ(Bn−1, fBn−1) = 1.

Thus, γ(Bn, f) = 1 as g
Bn−1

Bn
(v3,n) = 1 (see Figure 3.10c).

→

→→

→→

1

1

1

1

1

2

2

2

2

3

3

3

4

56(a)

(b)

(c)
χSC(Ln−1) χSC(Ln−1)

χSC(Ln−1)χSC(Ln−1)

χSC(Ln−1)χSC(Ln−1)

−1+1

+1

+1

Figure 3.10: The possibilities for Claim 5 part (a)

If fn = (2, 2, 3), then γ(Tn, fTn
) = 2, and moreover, size(fTn

Ln−1
) < χSC(Ln−1).

Hence, γ(Tn, f) = 1 by Lemma 3.4. If fn = (3, 2, 2), then the same argument works
with Tn replaced by Bn. The only other case is fn = (2, 3, 2). Let g be a size function
on Ln−1 defined by g(v1,n−1) = f(v1,n−1)− 1 and g(vi,j) = f(vi,j) for all other i and j.
Choose a g-assignment C′′ such that any proper C′′-coloring c′′ satisfies c′′(vi,n−1) = ai,
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i = 2, 3. This exists by hypotheis since size(gLn−1) = χSC(Ln−1). Define an f -
assignment C by C(v1,n−1) = C′′(v1,n−1) ∪ {1}, C(vi,n) = C′(vi,n) for i = 1, 2, 3, and
C(vi,j) = C′′(vi,j) for any other values of i and j. Suppose c were a proper C-coloring
and c(v1,n) = 1. Then c must restrict to a proper C′′-coloring on Ln−1 which would
imply that c(v2,n−1) = a2 and c(v3,n−1) = a3. However, then c(v2,n) = c(v3,n) = 3,
which is not possible. So any proper C coloring c must satisfy c(v1,n) = a1.

To prove (b), by Claim 1, note first that f does not assign list size 1 to any vertex
of Hn, nor list size 2 to adjacent vertices of Hn. If one of f(v1,n) and f(v2,n) is 2
and the other is 3, then γ(Tn, f) = 1, as γ(Tn−1, fLn−1) = 1 by hypothesis. If one of
f(v2,n) and f(v3,n) is 2 and the other is 3, then γ(Bn, f) = 1, as γ(Bn−1, fLn−1) = 1
by hypothesis.

To prove Theorem 3.7, we will first we exhibit choice functions of the desired size,
then we will show by (strong) induction on n that

χSC(P3 Â Pn) = χSC(P3 Â Pn−1) +

{
7 if n ≡ 2 (mod 3)
8 otherwise

,

and moreover that any minimum choice function f on P3 Â Pn satisfies that if n ≡
0 or 1 (mod 3), then γ(Hn, fn) = 1, and if n ≡ 2 (mod 3), then γ(Tn, fTn

) = 1 and
γ(Bn, fBn

) = 1. From this the statement of the theorem follows. Our base cases are
n = 1, 2. For all that follows assume that f is a size function on P3 Â Pn.

Upper bound We will exhibit choice functions of the desired size. First, P1 Â Pn is
a path, hence is sc-greedy. Moreover by Theorem 2.5, P2 Â Pn is sc-greedy. We will

now show that the size function g =
2 3 2
2 2 3
2 2 2

on G = P3 Â P3 is choosable.

Consider first the choice function h ≡ 2 on P2 Â P2. Let H ′ = P2 Â P2 − v2,1. We
will show γ(H ′, hH) = 2. To see this, let C be a h-assignment with C(v1,2) = ab, and
suppose that any proper C-coloring uses color b on v1,2. For this to be true, it must
be that C is given by ac ab

cd ad , for some colors c and d. However, as c 6= d, there exist at
least two proper colorings from these lists. If we assume, without loss of generality,
that c 6= b, then one proper coloring uses color a on v1,1 and another uses color c.
Note that if c 6= b, but d = b, then there are exactly two proper colorings. Having
established this, consider now P3 Â P3. Let S = B1 ∪ B2, which is isomorphic to
P2 ÂP2, and let S ′ = S−v2,1. Note that S ′C is a path on 5 vertices, and further, label
the vertices of the path as w1 = v1,1, w2 = v1,2, w3 = v1,3, w4 = v2,3, and w5 = v3,3.

Let D be a g-assignment. We must find a proper D-coloring. Let s be a proper
coloring of DS. We can extend s to a proper coloring of all of G if we can find a
proper coloring from the list assignment D′ on S ′C given by D′(wi) = D(wi)\s(vi),
where vi is the vertex of S ′ adjacent to wi, if it exists. Moreover, we can find such
a coloring unless the lists D′ are given by a, ac, cd, bd, b on the vertices w1 ,w2, w3,
w4, w5, respectively, for some colors a, b, c, and d. If this is the case, then consider
another proper DS-coloring t such that sS′ 6= tS′ . As above, we can extend t to a
proper coloring of all of G if we can find a proper coloring from the list assignment
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D′′ on S ′C given by D′′(wi) = D(wi)\{t(vi)}, where vi is the vertex of S ′ adjacent to
wi, if it exists. Moreover, we can find such a coloring unless the lists D′′ are given by
a′, a′c′, c′d′, b′d′, b′ on the vertices w1 ,w2, w3, w4, w5, respectively, for some colors
a′, b′, c′, and d′. However it is not possible for the lists to be simultaneously of this
form and of the form a, ac, cd, bd, b on the vertices w1, w2, w3, w4, w5. Thus, we can
extend t to a proper coloring of G.

Now, for n ≡ 0 (mod 3), we get a choice function f on P3ÂPn of size χSC(Ln−1)+7
from a choice function g on P3 Â Pn−3 by defining f(v) = g(v) for v ∈ V (Ln−3), and

defining fRn−2 to be
3 3 2
4 2 2
3 2 2

. To see that this is choosable, let C be an f -assignment.

Let c′ be a proper CLn−3-coloring. Note that fn−3
Rn−2

is equivalent to the choice function
of size 20 previously given, and hence there exists there exists a proper coloring c′′

of Rn−2 from the fn−3
Rn−2

-assignment D given by D(vi,n−2) = C(vi,n−2)\{c′(vi,n−3)} for
i = 1, 2, 3, and D(v) = C(v) for v ∈ V (Rn−1). We can then combine c′ and c′′ to get
a proper D-coloring.

Next, for n ≡ 1, 2 (mod 3), we get a choice function f on P3 Â Pn of size
χSC(Ln−1) + 8 from a choice function g on P3 Â Pn−1 by defining f(v) = g(v) for
v ∈ V (Ln−1), and defining fn = (3, 2, 3). To see that this is choosable, let C be an
f -assignment. Let c′ be a proper CLn−1-coloring. Note that fn−1

n = (2, 1, 2) and is
choosable, so there exists a proper coloring c′′ of Hn from the fn−1

n -assignment D
given by D(vi,n−2) = C(vi,n)\{c′(vi,n)} for i = 1, 2, 3. We can then combine c′ and c′′

to get a proper D-coloring.

Lower Bound

Case n = 1: This follows directly from Lemma 3.6.

Case n = 2: This is Claim 3.

Case n ≡ 0 (mod 3):

Lower bound: First we will show that χSC(P3 Â Pn) ≥ χSC(P3 Â Pn−1) + 7. Consider
a size function f of size χSC(P3 Â Pn−1) + 6. There are two possibilities, according
to the choosable values of size(fn) and size(fLn−1). These two cases are size(fn) = 5
and 6, which immediately follow from Claim 2 parts (b) and (a), respectively.

Minimum Choice Property: Next we must show that if f is a minimum choice func-
tion, then γ(Hn, f) = 1. We have three cases to consider, according to the choos-
able values of size(fn) and size(fLn−1). The cases size(fn) = 5 and 6 are immedi-
ately taken care of by Claim 2 parts (e) and (d), respectively. If size(fn) = 7, then
size(fLn−1) = χSC(Ln−1). By the induction hypothesis, γ(Tn−1, fLn−1) = 1, and Claim
2(c) applies.

Case n ≡ 1 (mod 3):

Lower bound: First we will show that χSC(Ln) ≥ χSC(Ln−1) + 8. Consider a size
function f of size χSC(Ln−1)+7. There are two possibilities, according to the choosable
values of size(fRn−1) and size(fLn−2). If, on the one hand, size(fRn−1) = 13, then
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size(fLn−2) = χSC(Ln−2)+1, and by Claim 3, we know that γ(Tn−1, fRn−1) = 1. Thus,
(Ln, f) is not choosable by Claim 2(b). On the other hand, if size(fRn−1) = 14, then
size(fLn−2) = χSC(Ln−2). By the induction hypothesis, γ(Hn−2, fLn−2) = 1, so (Ln, f)
is not choosable by Claim 2(a).

Minimum Choice Property: Second, we must show that if f is a minimum choice
function, then γ(Hn, f) = 1. We have four cases to consider, according to the
choosable values of size(fn) and size(fLn−1). The cases size(fn) = 5, 6, are im-
mediately taken care of by Claim 2 parts (e) and (d), respectively. If size(fn) = 8,
then size(fLn−1) = χSC(Ln−1), so by the induction hypothesis γ(Hn−1, fLn−1) = 1, and
Claim 2(c) applies. Finally, suppose size(fn) = 7. We consider the choosable values of
size(fn−1). Either size(fn−1) = 7 and size(fLn−2) = χSC(Ln−2) + 1, or size(fn−1) = 8
and size(fLn−2) = χSC(Ln−2). If at least one of γ(Tn−1, fLn−1) and γ(Bn−1, fLn−1)
equals 1, then the result follows from Claim 2(a). Otherwise, by Claim 5 there are
two possibilities left to consider: fn−1 = (2, 4, 2) or (2, 3, 2)

In the first case, γ(Tn−2, fLn−2) = 1 by the induction hypothesis. Let g = f
Tn−2

R2
. It

suffices to show that γ(Hn, g) = 1. Set h = g
v1,n−1

R2−v1,n−1
. Since g(v1,n−1) = 1, it suffices

to show γ(Hn, h) = 1. However, size(hn) = 6 so γ(Hn, hn) = 2, and size(hBn−1) = 4,
so hn

Bn−1
is not choosable. Thus, by Lemma 3.4, γ(Hn, h) = 1, and the result follows

(see Figure 3.11).

→ →
12

2 2

2

2

34 677(a)
χSC(Ln−1)

Figure 3.11: The possibility fn−1 = (2, 4, 2)

In the second case, by Claim 5, any fn−1-assignment of the form (1a1, 13a2, a3)
can be extended to an fLn−1-assignment C satisfying that any proper C-coloring c
must have c(v1,n) = a1, and by symmetry, the same statement holds if we replace
v1,n by v3,n. Let D be the extension for the fn−1-assignment (12, 123, 23), so that any
proper D-coloring must use color 2 on v1,n−1. We consider the possibilities for fn. If
f(v1,n) = 1, then extend D to an f -assignment with no proper coloring by defining
D(v1,n) = 2. The values of D on Bn are irrelevant. By symmetry, if f(v3,n) = 1,
then f is not choosable. If f(v2,n) = 1 and f(v1,n) = 2, then extend D instead by
defining D(v1,n) = 12, D(v2,n) = 1. By symmetry, if f(v2,n) = 1 and f(v3,n) = 2,
then f is not choosable. The remaining cases to consider are fn = (3, 1, 3), (2, 3, 2)
and (2, 2, 3). By symmetry, we need not consider (3, 2, 2). The lists for the following
cases are shown in Figure 3.12. For the first case, extend D by defining DHn

=
(123, 1, 123). Let c be a proper D-coloring. Then c(v2,n) = 1 and c(v1,n−1) = 2 imply
that c(v1,n) = c(v2,n−1) = 3, and hence c(v3,n−1) = 2 and c(v3,n) = 3. For the second
case, extend D by defining DHn

= (24, 124, 12). Let c be a proper D-coloring. Then
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c(v1,n−1) = 2 implies that c(v1,n−1) = 4. Thus, Bn−1 ∪ Bn must be colored from
13 12
23 12 . Clearly then, we must have c(v2,n) = 2 and c(v3,n) = 1. For the third case,
instead of D, consider the fn−1-assignment (12, 123, 34), which can be extended as
above to an fLn−1-assignment F such that any proper F -coloring must use color 2
on v1,n−1. Extend F to all of Ln by defining FHn

= (234, 14, 14). Let c be a proper
F -coloring. Then c(v1,n−1) = 2 implies that Bn−1 ∪ Bn must be colored from 13 14

34 14 .
Hence, c(v2,n) = 4 and c(v3,n) = 1, and therefore, c(v1,n) = 3.

12 2
123
23

12 12
123 1
23

12 123
123 1
23 123

12 24
123 124
23 12

12 234
123 14
34 14

Figure 3.12: Lists for the remaining special cases of n ≡ 1 (mod 3)

Case n ≡ 2 (mod 3): First, we show that χSC(P3 Â Pn) ≥ χSC(P3 Â Pn−1) + 8.

Lower Bound: Let f be a size function of size χSC(P3 Â Pn) + 7. We consider the
choosable values of size(fn) and size(fLn−1). First, if size(fn) = 5, then Claim 2(b)
applies. If size fn = 7, then size(fLn−1) = χSC(Ln−1), and hence by the induction
hypothesis, γ(Hn−1, fn−1) = 1, and Claim 2(a) applies. Thus, any choice function
must satisfy size(fn) = 6. Now consider the choosable values of size(fRn−1) and
size(fLn−2). Suppose that size(fRn−1) = 15. Then size(fLn−2) = χSC(Ln−2), so by the
induction hypothesis, γ(Hn−2, fLn−2) = 1, and Claim 2(a) applies. Thus, it remains
to consider size(fRn−1) = 13 or 14.

Suppose that size(fRn−1) = 13. Then both γ(Tn−1, fRn−1) and γ(Bn−1, fRn−1) equal
1 by Claim 3. By Claim 1, no choice function may assign list size 1 to any vertex of
Hn−2, nor list size 2 to adjacent vertices of Hn−2. We conclude that size(fn−2) ≥ 7.
According to the choosable values of size(fn−2) and size(fLn−3), we then have three
possibilities to consider, size(fn−2) = 7, 8, or 9. First, if size(fn−2) = 7, then as
γ(Tn−1, fRn−1) = 1 it suffices to consider g = fTn

Ln−2
. However, size(gn−2) = 5, so

γ(Hn−2, gn−2) = 1, and thus it suffices to consider gn−2
Ln−3

, which is not choosable, as it
has size less than χSC(Ln−3) (see Figure 3.13).

→→ 57 13χSC(Ln−3) χSC(Ln−3) χSC(Ln−3)
−1+2+2

Figure 3.13: The case where size(fn−2) = 7

Next, consider size(fHn−2) = 8. We consider the possible values of f(v1,n−2). As
mentioned, f does not assign list size 1 to any vertex of Hn−2, nor list size 2 to adjacent
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vertices of Hn−2. Thus, if f is choosable, then 2 ≤ f(v1,n−2) ≤ 3, for if f(v1,n−2) ≥ 4,
then f would either assign list size 2 to both vertices of Bn−2 or else list size 1 to one of
them. If f(v1,n−2) = 2, then it suffices to consider g = f

Tn−1

Ln−2
, since γ(Tn−1, fRn−1) = 1.

Then we have g(v1,n−2) = 1, so it suffices to consider h = g
v1,n−2

Ln−2−v1,n−2
. In that case,

size(hLn−3) = χSC(Ln−3), so by the induction hypothesis, γ(Bn−3, Ln−3) = 1. Thus,

it suffices to consider h
Bn−3

Bn−2
, which is not choosable as it has size 2 (see Figure 3.14).

→ → →
12

2456
13 χSC(Ln−3) χSC(Ln−3)χSC(Ln−3)

+1 +1

Figure 3.14: The case where size(fn−2) = 8 and f(v1,n−2) = 2

If f(v1,n−2) = 3, then since γ(Bn−1, fRn−1) = 1, it suffices to consider g = f
Bn−1

Ln−2
.

However, size(gBn−2) = 3, so γ(Bn−2, gBn−2) = 1, and thus it suffices to consider g
Bn−2

Ln−3
,

which is not choosable, as it has size less than χSC(Ln−3) (see Figure 3.15). Thus,
f(v1,n−2) ≥ 4, and by symmetry, f(v3,n−2) ≥ 4. But then f(v2,n−2) = 0, so f is not
choosable.

→ →
233

35
13χSC(Ln−3) χSC(Ln−3) χSC(Ln−3)

−1+1 +1

Figure 3.15: The case where size(fn−2) = 8 and f(v1,n−2) = 3

Lastly, consider size(fHn−2) = 9. Then size(fLn−3) = χSC(Ln−3). As mentioned, no
choice function assigns list size 1 to any vertex of Hn−2. Suppose that f(v1,n−2) = 2.
By Lemma 3.4, f is not choosable, as γ(v1,n−2, fv1,n−2) = 2, size(f

v1,n−2

Ln−3
) < χSC(Ln−3),

and size(f
v1,n−2

Rn−1
) < χSC(Rn−1). Suppose next that f(v3,n−2) = 3. Then size(fBn−2) =

6. It suffices to consider g = f
Bn−1

Ln−2
, since γ(Bn−1, fRn−1) = 1. By the induction

hypothesis, γ(Bn−3, fLn−3) = 1, so it suffices to consider h = gn−3
Bn−2

. However,
size(h) = 2, so h is not choosable (see Figure 3.16). Thus, for f to be choosable,
f(v1,n−2) ≥ 4, and by symmetry, f(v3,n−2) ≥ 4. However, this would then require
f(v2,n−2) = 1, which is not possible by Claim 1.

Next, we must consider size(fRn−1) = 14. As shown earlier it suffices only to con-
sider size(fn) = 6. Thus, we must have size(fn−1) = 8. We have four cases to consider
according to the choosable values of size(fn−2) and size(fLn−3). If size(fHn−2) = 5, then
by the case n = 3, (Rn−2, fRn−2) is not choosable as size(fRn−2) = 19 < χSC(Rn−2). If
size(fHn−2) = 6, then γ(Hn−2, fn−2) = 2. Furthermore, size(fLn−3) = χSC(Ln−3) + 2,
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→ →
2

3 3 3

46
13 χSC(Ln−3)χSC(Ln−3)

Figure 3.16: The case where size(fn−2) = 9 and f(v1,n−2) = 3

so fn−2
Ln−3

is not choosable, and size(fRn−1) = 14, so fn−2
Rn−1

is not choosable. Thus, by
Lemma 3.4, f is not choosable.

If size(fHn−2) = 8, then size(fLn−3) = χSC(Ln−3). Note that size(fRn−1) = 14,

so if γ(Tn−2, Ln−2) = 1 or γ(Bn−2, Ln−2) = 1, then f
Tn−2

Rn−1
is not choosable. Thus,

by Claim 5(b), it only remains to consider fHn−2 = (2, 4, 2). By the induction
hypothesis, γ(Tn−3, fLn−3) = 1, so it suffices to consider g = fTn−3 , and since
g(v1,n−2) = 1, it suffices to consider h = gv1,n−2 . Now, size(hRn−1) = 13, so by

Claim 3, γ(Bn−1, hBn−1) = 1. However, size(hBn−2) = 4, so h
Bn−1

Bn−2
is not choosable

(see Figure 3.17).

→→ →
1

1

12

2

22

2

34 6 6 6788χSC(Ln−3)

Figure 3.17: The case where size(fRn−1) = 14 and fHn−2 = (2, 4, 2)

Finally, we have to consider size(fHn−2) = 7. In this case, size(fLn−3) =

χSC(Ln−3) + 1. If γ(Tn−2, fLn−2) = 1, then (Ln, f) is not choosable, as (Rn−1, f
Tn−2

Rn−1
)

is not choosable. A similar argument holds if γ(Bn−2, fLn−2) = 1. Otherwise, by
Claim 5, fn−2 = (2, 3, 2) and the fn−2-assignment (12, 123, 34), can be extended to
an fLn−2-assignment C′ satisfying that any proper C′-coloring c must have c(v1,n) = 2.
Since size(f

v1,n−2

Rn−1
) = 13, by Claim 3, there exists an f

v1,n−2

Rn−1
-assignment C′′ such that

2 6∈ C′′(v1,n−1) and any proper C′′-coloring c′′ must satisfy c′′(v2,n−1) = 1, c′′(v3,n−1) = 4
(we can choose the names of the colors as such). Define an f -assignment C by
C(v) = C′(v) for v ∈ V (Ln−2), C(v1,n−1) = C′(v1,n−1) ∪ {1}, and C(v) = C′′(v) for
any other v ∈ V (Rn−1). Then any proper C-coloring must have c(v2,n−1) = 1 and
c(v3,n−1) = 4, but in that case, c(v2,n−2) = c(v3,n−2) = 1, which is not possible.

Minimum Choice Property: Next we show that any minimum choice function f
satisfies γ(Tn, f) = 1 and γ(Bn, f) = 1. First, if size(fRn−1) = 13, then the re-
sult follows from the Claim 3. If size(fRn−1) = 16, then size(fLn−2) = χSC(Ln−2).
Thus, by the induction hypothesis, γ(Hn−2, fLn−2) = 1, so it suffices to consider
fn−2

Rn−1
. As size(fn−2

Rn−2
) = 13, the result follows from Claim 3. Consider now the

choosable values of size(fn) and size(fLn−1). The cases size(fn) = 5 and 6 follow
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immediately from Claim 2 parts (b) and (d), respectively. If size(fHn
) = 8, then

size(fLn−1) = χSC(Ln−1), so by the induction hypothesis, Claim 2(c) applies. Thus,
it remains to consider the cases size(fHn

) = 7 and size(fRn−1) = 14, 15.
Consider first size(fRn−1) = 15. Then size(fLn−2) = χSC(Ln−2) + 1. We con-

sider possibilities according to the choosable values of size(fn−2) and size(fLn−3). If
size(fn−2) = 5, then γ(Hn−2, fn−2) = 1, so it suffices to consider fn−2

Rn−1
, which is of

size 12 and hence is not choosable. If size(fHn−2) = 6, then f is not choosable by
Lemma 3.4, as γ(Hn−2, fn−2) = 2, and (Ln−3, f

n−2
Ln−3

) and (Rn−1, f
n−2
Rn−1

) are not choos-
able. Suppose now that size(fn−2) = 7. In this case size(fLn−3) = χSC(Ln−3) + 1.

If γ(Tn−2, fLn−2) = 1, then it suffices to consider g = f
Tn−2

Rn−1
. However, size(g) = 13,

so the result follows from Claim 3. A similar argument holds if γ(Bn−2, fLn−2) = 1.
Otherwise, by Claim 5, fHn−2 = (2, 3, 2) and the fHn−2-assignment (12, 123, 23) can be
extended to an fLn−2-assignment C′ satisfying that any proper C-coloring c must have
c(v1,n) = 2. The result then follows from Claim 4 applied to f

v1,n−2

Rn−2
. Finally, consider

size(fn−2) = 8. Then size(fLn−3) = χSC(Ln−3). Suppose that f(v1,n−2) = 3. Then
size(fBn−2) = 5. By the induction hypothesis γ(Bn−3, fLn−3) = 1, so it suffices to

consider g = f
Bn−3

Rn−2
. Notice then that size(gBn−2) = 3, so γ(Bn−2, gBn−2) = 1. Thus,

it suffices to consider h = g
Bn−2

Rn−1
. However, size(hRn−1) = 13, so the result follows

from the Claim 3 (see Figure 3.18a). By Claim 1, f does not assign list size 1 to any
vertex of Hn−2, nor list size two to any two adjacent vertices of Hn−2, so it remains
to consider fn−2 = (2, 4, 2). By the induction hypothesis, γ(Tn−3, fLn−3) = 1, so it

suffices to consider g = f
Tn−3

Rn−2
. Note that gn−2 = (1, 3, 2). Thus, it suffices to consider

h = g
v1,n−2

Rn−2−v1,n−2
. Notice that size(hn−1) = size(hn) = 7 and h(v2,n−2) = h(v3,n−2) = 2,

so the result follows from Claim 4 (see Figure 3.18b).

→→

→ →

1

2

2

22

2

2

3

3

3 3

4

5

777 788

(a)

(b)

131515

χSC(Ln−3)

χSC(Ln−3)

Figure 3.18: Two cases where size(fRn−1) = 15 and size(fn−2) = 8

The final case to consider is size(fRn−1) = 14. From earlier discussion, we only need
to consider size(fHn

) = size(fHn−1) = 7. We consider cases, according to the choosable
values of size(fn−2) and size(fLn−3). If size(fn−2) = 5, then size(fRn−2) = 19 <
χSC(Rn−2), by the case n = 3. If size(fn−2) = 6, then size(fRn−2) = 20 = χSC(Rn−2),
so by the case n = 3, γ(Hn, fRn−2) = 1. Now suppose size fHn−2 = 7. If f assigns list
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size 1 to any vertex vi,n−2 for any i = 1, 2, or 3, then it suffices to consider f
vi,n−2

Rn−1
,

which is of size 13, and hence the result follows from Claim 3. If f assigns list size
2 to two adjacent vertices of Hn−2, then the result follows from Claim 4. Otherwise,
we must have fn−2 = (2, 3, 2). Define a size function g on Ln−3 by g(v) = f(v)
for v ∈ V (Ln−4), and g(v) = f(v) − 1 for v ∈ V (Hn−3). Let C′ be a g-assignment
having no proper coloring, which exists because size(g) < χSC(Ln−3). Let C be the
fLn−2-assignment defined by CHn−2 = (12, 123, 23), C(v) = C′(v) for v ∈ V (Ln−4), and
C(vi,n−3) = C′(vi,n−3) ∪ {i} for i = 1, 2, 3. We may name the colors of C ′ such that
color i does not appear on C′(vi,n−3) for i = 1, 2, or 3. Then no proper C-coloring
may use color 2 on v2,n−2, as otherwise Ln−4 would have to be properly colored from
C′. The result then directly follows from Claim 4.

Next, suppose size(fHn−2) = 8. In this case, size(fLn−3) = χSC(Ln−3) + 1. Our
argument is quite analogous to that of the previous paragraph. As above, the result
follows if f assigns list size 1 to any vertex of Hn−2, or if f assigns list size 2 to
adjacent vertices of Hn−2. Suppose that f(v1,n−2) = 2 and f(v2,n−2) = 3. Define a
size function g on Ln−3 by g(v) = f(v) − 1 for v ∈ V (Tn−3) and g(v) = f(v) for
any other v ∈ V (Ln−3). Then size(g) < χSC(Ln−3), so there exists a g-assignment
C′ having no proper coloring. Define an fLn−3∪Tn−2-assignment C by C(v1,n−2) = 12,
C(v2,n−2) = 123, C(vi,n−3) = C(vi,n−3) ∪ {i}, for i = 1, 2, and C(v) = C ′(v) for any
other v ∈ V (Ln−3). We may name the colors of C′ such that color i does not appear
on C′(vi,n−3) for i = 1, 2. Then no proper C-coloring can use color 2 on v2,n−2, as
otherwise Ln−3 would have to be properly colored from C′. We may thus appeal
to Claim 4. A similar argument applies if any other adjacent vertices of Hn−2 are
assigned list sizes 2 and 3, respectively. So it suffices to consider fHn−2 = (2, 4, 2).
For this, we have a number of cases.

First, if fn−1 = (2, 2, 3), then γ(Tn−1, fTn−1) = 2. If we can show that g = f
Tn−1

Ln−3

is not choosable, then it follows from Lemma 3.4 that γ(Tn−1, fLn−1) = 1, and hence
it would suffice to consider fTn−1

n , which is of size 5, and from there one concludes
that γ(Hn, f

Tn−1
n ) = 1. To show g is not choosable, note that gn−2 = (1, 3, 2), so

it suffices to consider h = gv1,n−2 . We have size(hLn−3) = χSC(Ln−3), so by the

induction hypothesis, γ(Bn−3, hLn−3) = 1. Thus, it suffices to consider h
Bn−3

Bn−2
, which

has size 2 and hence is not choosable (see Figure 3.19). By symmetry, γ(Hn, f) = 1
if fn−1 = (3, 2, 2).

→→ 1

1

12

2

2

3
χSC(Ln−3)χSC(Ln−3)

+1

Figure 3.19: Part of the case where fn−1 = (2, 2, 3)

Next, suppose that f(v1,n−1) = 1. Let H be the subgraph induced by v1,n−1 and
v1,n−2. Note that γ(H, fH) = 1, so it suffices to consider g = fH . Since size(gLn−3) =
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χSC(Ln−3), by the induction hypothesis γ(Bn−3, gLn−3) = 1, so it suffices to consider
h = gBn−3 . Since size(hBn−2) = 3, we have γ(hBn−2 , hBn−2) = 1, so it suffices to
consider φ = hBn−2 . Since size(φBn−1) = 3, we have γ(φBn−1 , φBn−1) = 1. However,
φBn−1

n has size 4, and hence is not choosable (see Figure 3.20). By symmetry, f is not
choosable if f(v3,n−1) = 1.

→
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Figure 3.20: The case where f(v1,n−1) = 1

Next, suppose that f(v2,n−1) = 1. It suffices to consider g = f v2,n−1 . Note that
gHn−2 = (2, 3, 2), so by Claim 5, γ(v1,n−2, gLn−2) = 1. Thus, it suffices to consider
h = gv1,n−2 . Since h(v1,n−1) + h(v3,n−1) = 3, either h(v1,n−1) = 1 or h(v3,n−1) = 1.
Thus, either size(h

v1,n−1
n ) = 5 or size(h

v3,n−1
n ) = 5. We conclude that γ(Hn, f) = 1 (see

Figure 3.21).
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Figure 3.21: The case where f(v2,n−1) = 1

Consider now the possibilities for fn. First suppose that f(vi,n) = 1 for some i = 1,
2, or 3. We argue analogously as in Claim 3. Set g = f vi,n , and set vC

i,n. It suffices
to show that γ(H, g) = 1. Note that size(gLn−1) = χSC(Ln−1), so γ(Hn−1, gLn−1) = 1.
Thus it suffices to show that γ(Hn, g

n−1
n ) = 1. This is easily seen to be true, as

size gn−1
n is equal to 2 if i = 2, and 3 otherwise (see Figure 3.22).

From the above paragraphs, it remains to consider fn−2 = (2, 4, 2), fn−1 = (2, 3, 2),
and fn = (2, 2, 3) or (2, 3, 2). By symmetry, we need not consider fn = (3, 2, 2). Define
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a size function g on Rn−2 by g(v2,n−2) = f(v2,n−2) − 1 and g(v) = f(v) for any other
v ∈ V (Rn−2). Define a size function h on Ln−2 by h(v) = f(v) − 1 for v ∈ V (Tn−3)
and h(v) = f(v) for any other v ∈ V (Ln−3), and let C′ be an h-assignment having no
proper coloring, which exists by the induction hypothesis. We may assume that the
colors are named so that color i is not in C′(vi,n−3) for i = 1, 2. Define the following
g-assignments, D1 and D2.

D1 =
12 23 13
134 123 12
14 13 23x

D2 =
12 23 13
134 123 123
14 13 23

,

where the x can be any color other than 2 or 3. Define an f -assignment C by
C(vi,n−3) = C′(vi,n−3) ∪ {i} for i = 1, 2, C(v) = C ′(v) for any other v ∈ V (Ln−3),
C(v2,n−2) = Dj(v2,n−2) ∪ {2}, and C(v) = Dj(v) for any other v ∈ V (Rn−2), where
j = 1 if fHn

= (2, 2, 3) and j = 2 if fHn
= (2, 3, 2). Then no proper C-coloring may

use color 2 on v2,n−2, as otherwise Ln−3 would have to be properly colored from C′,
which is impossible.
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Figure 3.22: The two possibilities where f(vi,n) = 1

With the above setup, consider now fHn
= (2, 2, 3). We first note that γ(Tn, f) = 1

follows directly from Claim 2(b), since size(fTn
) = 4 and size(fLn−1) χSC(Ln−1) + 1.

Now, we show γ(Bn, f) = 1. By the above paragraph it suffices to verify that any
proper D1-coloring c must satisfy c(v2,n) = 2 and c(v3,n) = x. One can easily check
this by first supposing that c(v2,n) = 1, tracing through to get a contradiction, and
then supposing that c(v3,n) = 3, tracing through using the fact that c(v2,n) = 1 to
get a contradiction. Consider next fHn

= (2, 3, 2). We show that γ(Hn, f) = 1,
and by the above paragraph, it suffices only to verify that any proper D2-coloring
must satisfy c(v1,n) = 1, c(v2,n) = 3, and c(v3,n) = 2. One can check this by first
supposing that c(v2,n) = 1, tracing through to get a contraction, and then supposing
that c(v2,n) = 2, tracing through again to get a contradiction.

If size(fn−2) = 9, then size(fLn−3) = χSC(Ln−3), so by the induction hypothesis,
γ(Tn−3, fLn−3) and γ(Bn−3, fLn−3) are both 1. Thus, by Claim 1, f cannot assign list
size 1 to any vertex of Hn−2. Suppose next that f(v1,n−2) = 2. Since γ(Tn−3, fLn−3) =
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1, it suffices to consider g = f
Tn−3

Rn−2
. However, g(v1,n−2) = 1, so it suffices to consider

g
v1,n−2

Rn−1
, which is of size 13. Thus, the result follows from Claim 3 (see Figure 3.23a).

A similar argument works if f(v2,n−2) = 2 or f(v3,n−2) = 2. Thus, it remains only
to consider fn−2 = (3, 3, 3). By the induction hypothesis, γ(Bn−3, fLn−3) = 1. Thus,

it suffices to consider g = f
Bn−3

Rn−2
. Notice that g(v2,n−2) = g(v3,n−2) = 2, so the result

follows from Claim 4 (see Figure 3.23b).
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Figure 3.23: The case size(fn−2) = 9

Here is a table summarizing the minimum choice functions given in the proof.
The long entry gives the list sizes by column, that is, size(f1), size(f2), . . . .

n χSC list sizes by column
1 5 5
2 13 7,6
3 20 7,7,6
4 28 7,7,6,8
5 36 7,7,6,8,8
6 43 7,7,6,10,7,6
7 51 7,7,6,10,7,6,8
8 59 7,7,6,10,7,6,8,8
9 66 7,7,6,10,7,6,10,7,6

10 74 7,7,6,10,7,6,10,7,6,8
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Chapter 4

Fan Graphs

The fan graph Fn is Fn = Pn ∨ K1, obtained by joining a vertex to the path Pn.
In this chapter we consider the choosability of fan graphs. In particular, we answer
a question raised by Isaak, and independently by Pelsmajer and Albertson. They
asked if all outerplanar graphs are sc-greedy. We answer this question in the negative
by showing that fan graphs are not sc-greedy in general, and that in fact, the gap
between the greedy bound and the sum choice number can be arbitrarily large.

We label the vertices of Fn so that the vertices of the path are v1, . . . vn, with vi

adjacent to vi+1 for i = 1, . . . , n− 1, and v0 is the vertex joined to the path, adjacent
to vi for i = 1, . . . , n (see Figure 4.1). For simplicity, we will shorten the notation
from vi to i.

. . .

v0

v1 v2 v3 vn−1 vn

Figure 4.1: The fan graph Fn.

We will concern ourselves with τ(Fn), defined in Chapter 2 to be the minimum
size of a choice function f satisfying 2 ≤ f(v) ≤ deg(v) for all vertices v. Recall that
χSC(G) = min{τ(G), ρ(G)}. Thus, we will be considering size functions g that satisfy
g(1) = g(n) = 2, 2 ≤ f(i) ≤ 3 for i = 2, . . . , n − 1, and 2 ≤ g(v0) ≤ n. We will
express a choice function f on Pn as (f(1), . . . , f(n)), and a similar expression applies
to describe an f -assignment. In fact, since we are only considering choice functions
on Pn where 2 ≤ f(i) ≤ 3, we may omit the commas and write, for instance, (232232)
in place of (2, 3, 2, 2, 3, 2). The interval [i, j] refers to the subgraph induced by the
vertices i, i + 1, . . . , j.

45



4.1 The color-forcing number

Let f be a choice function on a graph G, and let H be an induced subgraph of G. We
will say color a is forced on H by an f -assignment C if for every proper C-coloring c,
there exists some vertex v ∈ V (H) such that c(v) = a. In other words, every proper
C-coloring must use color a on some vertex of H, although the vertices on which it is
used may differ depending on the coloring. For any f -assignment C, we define

µ(H, C) = |{a : a is forced by C on H}|,
µ(H, f) = max{µ(H, C) : C is an f -assignment}.

The color-forcing number of G is the maximum of µ(G, f) over all choice functions
f on G. As an example, consider (P4, g), where g ≡ 2. The g-assignment C =
(12, 12, 34, 56) satisfies µ(G, C) = 2, as only colors 1 and 2 are forced. On the other
hand, µ(P4, g) = 4, as the g-assignment D = (12, 12, 34, 34) satisfies µ(G,D) = 4,
and this is the maximum, as for any pair (G, f), clearly µ(G, f) ≤ |V (G)| (see Figure
4.2a). Next, consider (C4, g), where g ≡ 2. Let the vertices be v1, v2, v3, v4, with
vi adjacent to vi+1 with addition modulo 4. Let H be the subgraph consisting only
of the vertex v1. The g-assignment C = (12, 12, 13, 23) satisfies µ(H, C) = 1 as any
proper coloring must use color 1 on v1, but µ(H, CH) = 0 (see Figure 4.2b).

(a) (b)

1212

12 12 1212 13 233434 3456

v1 v2

v3 v4

Figure 4.2: The graphs used in the example on forcing colors.

Lemma 4.1. Let (G, f) be given. Let v ∈ V (G). Suppose that (G − v, fG−v) is
choosable. Then (G, f) is choosable if and only if f(v) > µ(N(v), fG−v).

Proof. Suppose first that (G, f) is choosable. Let C ′ be an fG−v-assignment achieving
the maximum µ(N(v), fG−v). If, in fact, f(v) ≤ µ(N(v), fG−v), then consider an
f -assignment C that satisfies C(w) = C ′(w) for w 6= v, and C(v) is some subset of the
µ(N(v), fG−v) colors that are forced on N(v). We have arrived at a contradiction as
C can have no proper coloring.

Conversely, suppose that f(v) > µ(N(v), fG−v). Let C be an f -assignment. Since
(G − v, fG−v) is choosable, there exists a proper CG−v-coloring of G − v. Further,
for any proper CG−v-coloring c of G − v, C(v)\{c(w) : w ∈ N(v)} is nonempty, since
otherwise, µ(G − v, C) ≥ f(v). Thus c can be extended to a proper C-coloring of
Fn.
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By the above lemma, (Fn, f) is choosable if and only if f(0) > µ(Pn, f[1,n]). Thus
we will focus on computing µ(Pn, g) for size functions g on Pn. Recall that here we
are interested in those size functions g that satisfy g(1) = g(n) = 2 and 2 ≤ g(i) ≤ 3
for all 1 < i < n − 1. Such size functions will be called basic choice functions. It
suffices to restrict our attention to basic choice functions, as we are looking for choice
functions with size less than the greedy bound, but we are not determining the sum
choice number.

4.2 Forcing colors on paths

The following lemma gives a choosability characterization for the path Pn, which is
probably well-known, though perhaps not documented.

Lemma 4.2. Let f be a size function on Pn with f(i) > 0 for each i = 1, . . . , n. Then
f is choosable if and only if there do not exist indices i1 < i2 with f(i1) = f(i2) = 1
and f(i) = 2 for i1 < i < i2. Moreover, in the case that f is not choosable, any
f -assignment which has no proper coloring must have a restriction to [i1, i2] of the
form (a1, a1a2, a2a3, . . . , aq−1aq, aq), where q = i2 − i1.

Proof. If there exist vertices i1 < i2 with f(i1) = f(i2) = 1 and f(i) = 2 for i1 < i <
i2, we will say that f has the bad subgraph property with end vertices i1 and i2. If
f has the bad subgraph property, then there is clearly no proper coloring from any
f -assignment C satisfying C(i1) = 1, C(i) = 12 for i1 < i < i2, and C(i2) = 2, if i2 − i1
is even, and C(i2) = 1, if i2 − i1 is odd. We now prove the converse, that if f does not
have the bad subgraph property, then it is choosable. We do this by induction on n,
with trivial basis n = 2 (the lemma is clearly true for n = 1). Assume the result for
Pn−1. Let f be a size function on Pn that does not satisfy the bad subgraph property,
let C be an f -assignment, and let S denote the subgraph induced by the vertices
1, . . . , n − 1. If f(n) > 1, then f is choosable, since by the induction hypothesis,
there exists a proper C-coloring c of S, and this extends to a proper coloring of Pn

since C(n)\{c(n − 1)} 6= ∅. On the other hand, if f(n) = 1, then by Lemma 2.1, f
is choosable if and only if fn is choosable. We shall assume fn is not choosable, and
arrive at a contradiction. If fn is not choosable, then by the induction hypothesis, it
satisfies the bad subgraph property for some end vertices j1 and j2. As f does not
have the bad subgraph property, it must be that j2 = n − 1, but then f(n − 1) = 2,
and hence f does indeed satisfy the bad subgraph property with end vertices j1 and
n. This is a contradiction with our assumption on f , so fn must be choosable, and
hence, f is also choosable.

We now prove the second statement of the lemma by induction on n. The basis
n = 2 is clear. Assume the result holds on Pn−1. Let C be an f[i1,i2]-assignment
having no proper coloring, and let a be the lone color of C(i2). By the first part of
the lemma, the restriction of C to the vertices i1, . . . , i2 − 1 has a proper coloring. If
a 6∈ C(i2 − 1), then this can be extended to a proper coloring of all of [i1, i2]. So it
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must be that a ∈ C(i2 − 1). In this case, there does not exist a proper C-coloring
of [i1, i2] if and only if there does not exist a proper coloring of [i1, i2] from the list
assignment C′ obtained from C by removing color a from C(i2 − 1). Further, by the
induction hypothesis, this is true if and only if C ′ is the form given in the statement
of the lemma. However, it then follows that C is of that form also.

We now use the above choosability characterization to give a color-forcing charac-
terization. Figure 4.3 gives an example of the lists in the statement of the following
lemma. For clarity, we display the vertices with list size 2 and 3 at different levels.

. . .. . .

a0a1 a1a2

a0a2a3

a3a4 a4a5 a5a6

a0a6a7

a7a8 a8a9

Figure 4.3: An example of the lists for Lemma 4.3.

Lemma 4.3. Let f be a basic choice function on Pn, and let C be an f -assignment.
Color a0 is forced by C on Pn if and only if there exist indices k0 < k1 such that for
j = 0, . . . , q − 1, the f -assignment C satisfies C(k0 + j) = ajaj+1 if f(k0 + j) = 2,
C(k0 + j) = a0ajaj+1 if f(k0 + j) = 3, and C(k1) = a0aq, for some colors a1, . . . , aq,
where q = k1 − k0.

Proof. Assume first that the condition on C holds. Then any proper C-coloring c
must satisfy c(k0) = a0 or c(k1) = a0, since if c(k0) 6= a0, then by tracing through the
lists, one easily concludes that c(k1) = a0. Conversely, suppose C does not satisfy the
condition. The only way in which all proper C-colorings would use a0 on some vertex
is if the lists with a0 removed are in the form prescribed in Lemma 4.2. This happens
only when the C satisfies the condition given in this lemma. Therefore, there exists a
proper C-coloring avoiding a0, and hence a0 is not forced.

Let k0 and k1 be the minimum vertices for which the lists appear as they do in
the above lemma. We will call k0 the initial vertex of a0 and k1 the final vertex. We
refer to lists in the form given in the lemma as a string (for a0). Thus, we may say
that k0 is the minimum vertex for which the lists starting at k0 are a string for a0,
and k1 is the minimum vertex greater than k0 with list size 2 that has a0 on its list.
Given a choice function f on Pn, set t(Pn, f) = |{i : f(i) = 2}|.

Lemma 4.4. If f is a basic choice function on Pn, then µ(Pn, f) ≤ t(Pn, f).

Proof. By Lemma 4.3, the initial and final vertices of any color a that is forced must
be distinct and must be assigned list size 2 by f .
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We imagine that there are 2t(Pn, f) slots to be filled with colors, two slots for
each vertex assigned list size 2. For an f -assignment to force t(Pn, f) colors, each
slot must be utilized as either the initial or the final vertex of a (forced) color. That
is, each vertex of list size 2 must be either the initial vertex for two colors, the final
vertex for two colors, or the the initial vertex for one color, and the final vertex for
another color. When we say a slot on vertex i is unused, we mean that vertex i is
initial for at most one color, final for at most one color, and not initial for one color
and final for another. When we say both slots on vertex i are unused, we mean that
vertex i is not initial or final for any color. We now prove three elementary lemmas
that will be quite useful.

Lemma 4.5. If a vertex i is initial for two colors, and f(i + 1) = 2, then i + 1 is
final for those two colors.

Proof. This follows directly from Lemma 4.3.

Lemma 4.6. Let f be a basic choice function on Pn, and let C be an f -assignment.
If C(j) = ab and C(j + 1) = bc for some vertex j and some colors a, b, and c with
a 6= c, then a slot is unused on either j or j + 1.

Proof. By Lemma 4.3, it cannot happen that j is the initial vertex of b and j + 1 is
the final vertex of b.

Lemma 4.7. Let f be a basic choice function on Pn, let C be an f -assignment, and
let a be a color. Set s = |{i : a ∈ C(i)}|. If s > 2, then there are at least s − 2 slots
unused. If s = 1, then there is a slot unused.

Proof. Only one vertex can be initial for a, and only one vertex can be final for a.
Moreover, a must appear on the lists of at least two vertices in order to be forced.

Lemma 4.8. Let f ≡ 2 be a basic choice function on Pn. Then µ(Pn, f) = 2⌊n/2⌋.

Proof. First, the maximum is achieved by the f -assignment C satisfying C(vi) =
C(vi+1) = aiai+1 for i = 1, 3, 5, . . ., where the ai are any distinct colors. On the other
hand, if µ(Pn, f) = n, then each slot must be utilized. This means that vertex 1 must
be initial for two colors, and hence, by Lemma 4.5, vertex 2 must be the final vertex
of those two colors. Repeating this argument, we see that the vertices 3, 5, . . . , 2n− 1
each must be initial for two colors, which is not possible if n is odd. Thus µ(Pn, f) < n
if n is odd, and in fact, the argument shows that C is unique if n is even.

1212 3434 5656

Figure 4.4: The list assignment C for the even case in Lemma 4.8
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Lemma 4.9. Let f ≡ 2 be a choice function on Pn. Let C be an f -assignment of the
form (a0a1, a1a2, a2a3, . . . an−1an). Then µ(Pn, C) = ⌊2(n + 1)/3⌋.
Proof. First, we give lists achieving the maximum. We will use integers for the colors.
The lists for the cases n = 2, 3, and 4 are (12, 12), (12, 12, 13), and (12, 12, 13, 13),
respectively. Set k = ⌊2(n + 1)/3⌋. If n ≡ 2 (mod 3), we get the lists for case n
from the lists for case n − 2 by appending the lists {k − 1, k}, {k − 1, k}. If n ≡ 0
(mod 3), we get the lists for case n from the lists for case n− 1 by appending the list
{k − 1, k + 1}. If n ≡ 1 (mod 3), we get the lists for case n from the lists for case
n − 1 by appending the list {k − 2, k}. For example, we have

n = 5 : (12, 12, 13, 34, 34),
n = 6 : (12, 12, 13, 34, 34, 35),
n = 7 : (12, 12, 13, 34, 34, 35, 35).

We now show that ⌊2(n+1)/3⌋ is the upper bound. Let a be a color whose initial
and final vertices differ by at least two. By Lemma 4.3, if a has initial vertex greater
than 1 and final vertex less than n, then at least four slots must be used in the forcing
of a. That is to say, a must appear on the lists of at least four different vertices. If
the initial vertex is 1 or the final vertex is n, then at least three slots must be used.
Let b be a color with initial vertex i and final vertex i + 1. By Lemma 4.5, if the list
on vi is bc, then the list on vi+1 must also be bc. Assume first that 1 < i < n − 1.
Then by Lemma 4.3, one of the colors b and c must appear on the list for vi+1 and by
the hypothesis on the lists in the current lemma, that color must also appear on the
list for vi−1. Thus, together the colors b and c use up at least six slots — two for one
color, four for the other. If i = 1 or i = n − 1, then a similar argument shows that
the colors b and c together use up at least five slots — two for one color, three for the
other. We conclude that the most efficient use of slots is, as much as possible, to have
a color’s initial and final vertices be adjacent. Moreover, it is most efficient for a list
assignment to force two colors with initial vertex 1 and two colors with initial vertex
n − 1. Thus, assuming we force two colors with initial vertex 1 and two colors with
initial vertex n − 1, we know from the hypothesis and Lemma 4.3 that no color can
have 3 or n − 2 as either its initial or final vertex. Each further color that is forced
must have initial vertex i satisfying 3 < i < n − 2. Thus, there remain 2n − 10 slots
unfilled, and each pair of colors forced requires a total of at least six slots, according
the the above discussion. We can thus force at most ⌊(2n − 10)/6⌋ pairs of colors,
in addition to the four already forced, bringing the total number of colors forceable
up to 4 + 2⌊(n − 5)/3⌋. There are 0, 2, or 4 slots left over after forcing pairs for
n ≡ 2, 1, 0 (mod 3), respectively. Thus in the case n ≡ 1 (mod 3), there is room for
one more color to be forced, but not in the other two cases, by the above discussion
about forcing a single color. Thus, for n congruent to 0 or 2 modulo 3, there are at
most 4 + 2⌊(n− 5)/3⌋ colors that can be forced, and at most 5 + 2⌊(n− 5)/3⌋ colors
if n is congruent to 1. In all cases, it can be checked that these quantities simplify to
⌊2(n + 1)/3⌋.
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We make the following definitions. Let fi be a choice function on Pi+4 such that
fi(2) = fi(i+3) = 3 and fi(j) = 2 for all other vertices j. For example, f3 = (2322232)
and f4 = (23222232). For i = 1, . . . , 5 we define the following fi assignments, Li.

L1[a1, a2, a3] = (a1a2, a1a2a3, a1a3, a1a2a3, a2a3),
L2[a1, a2, a3, a4] = (a3a4, a1a3a4, a1a2, a1a2, a1a3a4, a3a4),
L3[a1, a2, a3, a4] = (a3a4, a1a3a4, a1a2, a1a2, a1a2, a2a3a4, a3a4),
L4[a1, a2, a3, a4, a5] = (a4a5, a1a4a5, a1a2, a1a2, a1a3, a1a3, a1a4a5, a4a5),
L5[a1, a2, a3, a4, a5, a6] = (a5a6, a1a5a6, a1a2, a1a2, a1a3, a3a4, a3a4, a3a5a6, a5a6),

where a1, . . . , a6 are distinct colors (see Figure 4.5). One can easily check that each
of the above lists forces every color in their argument, e.g., L1[a1, a2, a3] forces a1,
a2, and a3. Given (Pn, f) with f ≡ 2 and n even, we define the f -assignment P =

12 12 12 12 12 12

12 1212 12

13

13 1313

23 34 34 34 34

34 344545 56 56

123123 134134134

145145 156

234

356

Figure 4.5: The list assignments L1, L2, L3, L4, and L5.

P [a1, . . . , an] by P(vi) = P(vi+1) = aiai+1 for i = 1, 3, 5, . . . , n − 1, where the ai

are any distinct colors. We think of this as a “pairing off” of the vertices (see, for
example, Figure 4.4). Given (P3, f) with f = (232), we define the f -assignment
S[a1, a2, a3] = (a1a2, a1a2a3, a2a3). One can easily check that P [a1, a2, . . . , an] forces
every one of those colors, and S[a1, a2, a3] forces only color a2.

Lemma 4.10. If i ≤ 2, then µ(Pi+4, fi) = t(Pi+4, fi). If 3 ≤ i ≤ 5, then µ(Pi+4, fi) =
t(Pi+4, fi) − 1. If i > 5, then µ(Pi+4, fi) = t(Pi+4, fi) − 2.

Proof. One may easily verify that for i ≤ 5, the lists Li achieve the bound. Let
a1, a2, . . . , ai+2 be distinct colors. If i > 5 and even, then any fi-assignment that is
equal to P [a1, a2, . . . , ai] on [3, i+2] achieves the bound. If i > 5 and odd, then any fi

assignment that is equal to P [a1, a2, . . . , ai−1] on [3, i+2] and equal to S[ai, ai+1, ai+2]
on [1, 3] achieves the bound. It remains to show that this bound is best possible.
It is clearly best possible for i = 1, 2 by Lemma 4.4. Let i > 2 and let C be an
fi-assignment.

Suppose first that color a1 is forced by C with initial vertex 1 and final vertex j
in [3, i + 2]. We will show that some slot is unused. First, suppose j = 3. By Lemma
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4.3, 3 is not final for another color. If 3 is initial for some color, then a1 ∈ C(4), so
by Lemma 4.7 a slot is unused. Suppose then that j > 3. Note that a1 6∈ C(j − 1),
since otherwise j − 1 would be final for a1. Whatever the other color on C(j) is, it
must also be on C(j − 1), so by Lemma 4.6, a slot is unused on either j − 1 or j.

Suppose next that color a1 is forced by C with initial vertex j in [3, i + 2] and
final vertex i + 4. We will show that some slot is unused. Let a2 be the other color
on C(i + 2). First, suppose j = i + 2. Since i + 4 is final for a1, C(i + 1) 6= a1a2 by
Lemma 4.5. By Lemma 4.3, i + 2 is not initial for a2. If i + 2 were final for a2, then
a1 ∈ C(i + 1), and a slot is unused on i + 1. Otherwise, a slot is unused on i + 2. If
j < i + 2, then a2 ∈ C(j + 1) and by Lemma 4.5 a1 6∈ C(j + 1), since i + 4 is final for
a1. Thus, by Lemma 4.6, a slot is unused on either j or j + 1.

Suppose now that C[3,i+2] is not a string. Let i0 be the maximum vertex for which
C[3,i0] is a string. That is, i0 is such that there is no color forced with initial vertex
at most i0 and final vertex greater than i0. Note that 3 ≤ i0 < i + 2 since C[3,i+2] is
not a string. By Lemma 4.3, and since C[3,i+2] is not a string, any color forced with
final vertex i + 4 must have an initial vertex greater than i0. If there are no colors
with final vertex i + 4, then two slots on i + 4 are unused, and if there is exactly one
color with final vertex i + 4, then there is one slot on i + 4 unused. If there is a color
with final vertex i + 4, then by the argument of the third paragraph, there is a slot
unused in [i0 + 1, i + 2]. Similarly, if there are no colors forced with vertex index 1,
then two slots on 1 are unused, and if there is exactly one color with initial vertex 1,
then there is one slot on 1 unused. If there is a color with initial vertex 1, then by the
argument of the second paragraph, there is a slot unused in [3, i0]. Combining these,
we see that there are in total at least three slots unused, except possibly if there are
two colors with initial vertex 1 and two colors with final vertex i + 4. As mentioned,
no color has initial vertex 1 and final vertex i + 4, so the final vertices of the colors
on C(1) must be in [3, i0]. Let k1 and k2, k1 < k2 be the final vertices of the colors on
C(1). Note that k1 6= k2 by Lemma 4.3. By Lemma 4.6, a slot is unused on k1 + 1,
and if k2 6= i0, then by Lemma 4.6, a slot is unused on k2 + 1. If k2 = i0, then by
Lemma 4.5, k2 is not final for the other color on C(k2) and is not initial for the color
by the definition of i0. Therefore, a slot is unused on k2. In all cases, there are at
least three slots unused in total.

Suppose then that C[3,i+2] is a string. By checking a small number of possi-
bilities, one can conclude from Lemmas 4.6 and 4.7 that at least two slots are
unused in [3, 5], and further, that at least three slots are unused in [3, 7] unless
C[3,7] = (a3a4, a3a4, a3a5, a5a6, a5a6) and i = 5. If i > 5 and C restricts to the above
lists on [3, 7], then a third slot is lost on 8. The result follows.

Note that GB(Fn) = 3n. We now get to the main result.

Theorem 4.11. Fan graphs are not sc-greedy in general, and in fact, the gap between
GB(Fn) and χSC(Fn) can be made arbitrarily large.
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Proof. By the preceding lemma µ(P10, f6) = 6. Thus by Lemma 4.1, the size function
g on F10 defined by g(v0) = 7 and g(vi) = f6(vi) for i > 0 is choosable. Note that
size(g) = 29, but GB(F10) = 30. Moreover, one can show that the gap between
GB(Fn) and χSC(Fn) can be arbitrarily large. For example, consider the size function
hk on P11k−1 defined by hk(vi) = 3 if i ≡ 2 or 9 modulo 11, and h(vi) = 2 for
any other i (see Figure 4.6 and recall that we display the vertices with list size 3
on a level above those of list size 2). Then µ(P11k−1, hk) = t(P11k−1, hk) − k − 1,
and hence the size function g′ on F11k−1 defined by g′(v0) = t(P11k−1, hk) − k and
g′(vi) = hk(vi) for i > 0 is choosable and of size GB(F11k−1) − k. We give a sketch
of why µ(P11k−1, hk) = t(P11k−1, hk) − k − 1. First, note that by the arguments of
the second and third paragraphs of the preceding lemma, at least two slots are lost
at each of the ends; that is, at least two slots are unused in [1, 8], and at least two
slots are unused in [11k− 8, 11k− 1]. Consider now the intervals [11j − 1, 11j +1] for
1 ≤ j < k. By arguments similar to those used in the preceding lemma, we can show
that at least two slots are lost within each of these intervals, unless the preceding
interval [11j − 8, 11j − 3] is a string. In that case, however, at least two slots are lost
on that interval, in addition to any that were already lost there. In total, there are
at least 2(k + 1) slots unused, and hence at most t(P11k−1, hk)− (k + 1) colors can be
forced.

In particular, F10 is not sc-greedy, thus answering the question of Isaak, Pelsmajer,
and Albertson: Outerplanar graphs are in general not sc-greedy. We suspect that the
value GB(Fn) − ⌊(n + 1)/11⌋ is actually the sum choice number. That is, the gap
between the greedy bound and the sum choice number jumps up by one when n
increases from n = 11k − 2 to n = 11k − 1 for k > 1, and the gap stays the same
otherwise. So the pairs (P11k−1, hk) may, in some sense, be minimal. One can verify
quite easily using the ideas given herein that Fn is sc-greedy for n < 10. In fact, the
ideas of the proof of Lemma 4.10 can likely be used to give a polynomial algorithm
to determine if a given size function on Fn is choosable.

Figure 4.6: The choice function h2 on P21
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Chapter 5

Conclusions and Directions for
Future Work

The determination of the sum choice number of P3 Â Pn in Chapter 3 is of a rather
unfortunate length. The proof of the upper bound is reasonably short, and could
possibly be improved a bit, but the only method of proof for the lower bound that
we found was to proceed in (numerous) cases. We used the same essential idea to
eliminate many of the cases, but there still remained several special cases that had
to be dealt with on an individual basis. There may be some way to quickly eliminate
from consideration any size function that assigns size 1 to some vertex, which would
then considerably cut down on the work involved. There seems to be some hope for
the n×m grid Pn Â Pm. We have made some progress in determining χSC(P4 Â Pn);
any hints at a formula for the general case, however, have eluded us.

The techniques of Chapter 4 can be used to determine the sum choice number
of fan graphs, and further can also give a fast algorithm to determine if a given size
function on a fan graph is choosable. All of this relies on the computation of the
color-forcing number of Pn. However, though we believe a relatively straightforward
computation exists, all attempts thus far have resulted in ugly arguments with nu-
merous cases. The determination of the color-forcing number for graphs other than
paths may be interesting, but likely difficult.

A natural generalization of the Peterson graph result is to consider the sum choice
number of Kneser graphs. The Kneser graph K(n, k) is the graph whose vertices
correspond to the k-element subsets of {1, 2, . . . , n}, with an edge between two vertices
if and only if their corresponding subsets are disjoint. The Peterson graph is K(5, 2),
and its abundant symmetry of the Peterson graph helped to keep the proof relatively
short. This may carry over to more general Kneser graphs, in particular those of the
form K(p, 2).

Though not included here, we have done a considerable amount of work on gen-
eralized theta graphs, graphs consisting of two vertices joined by k internally vertex
disjoint paths. We expect some results on sum choice numbers and possibly a choos-
ability characterization. Note that K2,n is a generalized theta graph, and in fact,
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ideas similar to the blocking idea of Lemma 2.9 are quite useful here. We have deter-
mined that choosability of generalized theta graphs depends solely on the number of
paths with one internal vertex, the number of paths with an even number of internal
vertices, and the number of paths with an odd number (greater than one) of internal
vertices.

The author and Arthur Busch have investigated the sum choice number of the
general complete bipartite graph Kp,q, for which Lemma 2.9 is still quite useful.
However, the important fact from the p = 3 case, that for any minimum choice
function, the lists on the larger partite set all have size 2, seems to break down for
p > 4. It still seems that this is the most important case of the proof, and in fact, we
may have a characterization of choosability, for any p and q, if the lists on the larger
partite set are all 2. One should not expect the determination of the sum choice
number of Kp,q to be easy, given that determination of the ordinary choice number
on Kp,q is so difficult. On the other hand, the choice number of complete multipartite
graphs with each partite set of size 2 has been determined [3], as has the case when
all partite sets are of size 3 [4]. Thus, it seems reasonable to compute the sum choice
number for these graphs.

Lemma 2.9 may have significant applications. One application is to determine
χSC(G∨Kq), where G has a particularly simple structure. Recall that Kp,q = Kp∨Kq.
We have some results for arbitrarily large q in the case where G is K2, K3, or P3. It
seems that further work could produce some interesting results. However, we should
not expect too much if G is very large. For example, the fan graph Fn is Pn ∨ K1,
and this has already proven to be nontrivial. On the other hand, we may be able to
determine χSC(Kp ∨ Kq) without too much difficulty.

As mentioned in the discussion following Theorem 2.5, the techniques of that
proof extend to show that graphs created by laying end-to-end cycles of arbitrary
and varying lengths greater than 3 are sc-greedy. As mentioned there, if we laid the
cycles along a tree structure or a cycle, instead of end-to-end, the resulting graph
would still be sc-greedy. We believe that if cycles of length 3 are allowed, then the
resulting graphs would still be sc-greedy, but a more delicate argument would be
required (compare to Theorem 2.6). It may even be true that if cycles were laid out
rather than end-to-end or on a tree structure, but on the structure of an sc-greedy
graph, the resulting graph would still be sc-greedy (see Figure 5.1).

It seems that vertices of high degree have the potential to wreak havoc with the
sum choice number. This is evidenced by fan graphs and complete bipartite graphs.
In Chapter 4, we noted that choosability of paths is a simple matter, but as we saw,
as soon as one joins a vertex to the path (thus creating a vertex of high degree), things
become more difficult. The extreme simplicity of the structure of K2,q prevented this
from becoming an issue, but the influence becomes more apparent with K3,q. It would
be interesting to see what effect vertices of high degree have on other graphs.

It appears that much of the time, the determination of the sum choice number
of a graph is more difficult than the determination of the list chromatic number. To
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Figure 5.1: Cycles laid end-to-end or along an underlying tree structure

show that the list chromatic number of a graph is k, one has to show that f ≡ k
is choosable, whereas f ≡ k − 1 is not. In all, only two size functions need to be
considered. However, to get a lower bound for the sum choice number, one may have
to consider quite a few size functions. An illustrative example is P3 Â P2, which we
have considered on a number of occasions. On the other hand, as mentioned in the
introduction, the determination of the list chromatic number for complete bipartite
graphs is quite hard, but the determination of the sum choice number may turn out
to be tractable. To see why this is true, note that it is intuitively reasonable that to
find a choice function of minimum size, one should assign more list size to the vertices
of the smaller partite set (whose vertices have higher degree) than to vertices of the
larger partite set. In fact, the minimum choice functions constructed in Theorems
2.10 and 2.12 assign list size 2 to every vertex of the larger partite set, and the list
sizes of the vertices of the smaller partite set grow arbitrarily large as the graphs get
larger. Thus, in the case of complete bipartite graphs, sum list coloring bypasses some
of the difficulties encountered in the determination of the list chromatic number. In
particular, determining if there is a proper coloring from lists is less difficult when a
large number of the lists have size 2. In fact, if all the lists are of size 2, then the
existence of a proper coloring from the lists can be found quickly, by choosing a color
on one of the lists, and then tracing through the possibilities.

One ambitious project would be to characterize sc-greedy graphs. Another pos-
sibility would be the calculation of the sum choice number for a general outerplanar
graph. It would be interesting to find heuristics that do better than the greedy al-
gorithm on reasonably broad classes of graphs. There are algorithms and techniques
developed in the study of the list chromatic number, but in the case of minimizing the
sum of the list sizes, none of these ever seems to do better than the greedy algorithm.
We would also be interested in results concerning the difference χSC(G)−GB(G) for
various graphs. We suspect that this difference is maximized by complete bipartite
graphs. One can check, for example, that K2,3 is the smallest (in terms of number of
vertices) graph which is not sc-greedy.
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In conclusion, we feel that previous results and our results have only scratched the
surface of what may be a very interesting field of research. The techniques developed
herein can be used to determine sum choice numbers of other classes of graphs, and
have applications to the broader question of choosability.
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