
Some unusual mathematical images and the
math behind them

Brian Heinold

Department of Mathematics and Computer Science
Mount St. Mary’s University

November 5, 2022

1 / 196

A little history

Circa 1999 wanted to draw Mandelbrot set

Had some programming experience

What about other formulas?

2 / 196

Part of the program I wrote

3 / 196

The first image I generated

4 / 196

Complex numbers

i =
√
−1 (solution to x2 + 1 = 0)

Examples: 2i, 3 + 4i, −.2 + .76i

Addition: (2 + 3i) + (5 + 8i) = 7 + 11i

Multiplication: (2 + 3i)(5 + 8i) = 10 + 31i+ 24i2 = −14 + 31i

Division: 2+3i
5+8i =

2+3i
5+8i ·

5−8i
5−8i =

34−8i
89 = 34

89 + 8
89 i

5 / 196

Picturing them

6 / 196

Polar representation

x+ iy ←→ reiθ

z1 = r1e
iθ1 , z2 = r2e

iθ2

⇒ z1z2 = r1r2e
i(θ1+θ2) (a rotation and a dilation)

7 / 196

Iteration

Example: Let f(x) = x2 and start with x = 2.

f(2) = 4
f(4) = 16
f(16) = 256
f(256) = 65536
. . .

Iterates are approaching ∞.

8 / 196

A different starting point

Let f(x) = x2 and start with x = 1
2 .

f(12) =
1
4

f(14) =
1
16

f(1
16) =

1
256

f(1
256) =

1
65536

. . .

Iterates are approaching 0.

9 / 196

Another example

Let f(x) = −x and start with x = 1.

f(1) = −1
f(−1) = 1
f(1) = −1
f(−1) = 1
. . .

Iterates are not settling down on a value.

10 / 196

Coloring by convergence

Color each point according to how fast it converges.

Count how many iterations until two successive values are
within .00001 of each other.

Assign each count a color.

Convergence to infinity is still convergence (color by # of steps
to exceed ±105).

11 / 196

Iteration with complex numbers

Plug z = x+ iy into f(z). Get a value, and plug that value into
the function. Then plug the result of that into the function, etc.

12 / 196

The process

Look at all the possible starting values in a region.

For each starting point, iterate the function.

If two successive values are within .00001 of each other, there’s
a very good chance that the iterates will converge.

13 / 196

The process, continued

In this case, color the point with a color representing how long
it took for this to happen.

It is possible that the iteration may never stop. Give up after a
few hundred iterations and color the point yellow.

Note: convergence to infinity is still convergence (color by how
many steps for iteration to exceed ±105).

14 / 196

Color scheme

15 / 196

A fractal from Newton’s method

Newton’s method is useful for estimating the roots of a
function.

Let’s try it on f(x) = x5 − 1.

Iterate x− f(x)
f ′(x) .

So, we iterate x− x5−1
5x4 .

We do know the roots already: x = 1 is the only real root.

All of them: cos
(
2πi
5

)
+ i sin

(
2πi
5

)
for i = 0, 1, 2, 3, 4.

16 / 196

A fractal from Newton’s method

Newton’s method is useful for estimating the roots of a
function.

Let’s try it on f(x) = x5 − 1.

Iterate x− f(x)
f ′(x) .

So, we iterate x− x5−1
5x4 .

We do know the roots already: x = 1 is the only real root.

All of them: cos
(
2πi
5

)
+ i sin

(
2πi
5

)
for i = 0, 1, 2, 3, 4.

17 / 196

A fractal from Newton’s method

Newton’s method is useful for estimating the roots of a
function.

Let’s try it on f(x) = x5 − 1.

Iterate x− f(x)
f ′(x) .

So, we iterate x− x5−1
5x4 .

We do know the roots already: x = 1 is the only real root.

All of them: cos
(
2πi
5

)
+ i sin

(
2πi
5

)
for i = 0, 1, 2, 3, 4.

18 / 196

A fractal from Newton’s method

Newton’s method is useful for estimating the roots of a
function.

Let’s try it on f(x) = x5 − 1.

Iterate x− f(x)
f ′(x) .

So, we iterate x− x5−1
5x4 .

We do know the roots already: x = 1 is the only real root.

All of them: cos
(
2πi
5

)
+ i sin

(
2πi
5

)
for i = 0, 1, 2, 3, 4.

19 / 196

A fractal from Newton’s method

Newton’s method is useful for estimating the roots of a
function.

Let’s try it on f(x) = x5 − 1.

Iterate x− f(x)
f ′(x) .

So, we iterate x− x5−1
5x4 .

We do know the roots already: x = 1 is the only real root.

All of them: cos
(
2πi
5

)
+ i sin

(
2πi
5

)
for i = 0, 1, 2, 3, 4.

20 / 196

A fractal from Newton’s method

Newton’s method is useful for estimating the roots of a
function.

Let’s try it on f(x) = x5 − 1.

Iterate x− f(x)
f ′(x) .

So, we iterate x− x5−1
5x4 .

We do know the roots already: x = 1 is the only real root.

All of them: cos
(
2πi
5

)
+ i sin

(
2πi
5

)
for i = 0, 1, 2, 3, 4.

21 / 196

Number of iterations

Demo time!

22 / 196

Newton’s method on x5 − 1

Iterating x− x5−1
5x4 to find roots.

The starting value matters.

x = 1.5: 1.24, 1.08, 1.01, 1.001994, 1.0000000795

x = 4: 3.20, 2.56, 2.05, 1.65, 1.35, 1.14, 1.03, 1.002,
1.000006, 1.00000000008

x = 10: 8.00, 6.40, 5.12, 4.10, 3.28, 2.62, 2.10, 1.69, 1.38,
1.16, 1.04, 1.00264, 1.0000140, 1.00000000039

x = .1: 2000, 1600, 1280, 1024, [33 more iterations. . .],
1.000956, 1.0000018

Negatives are funny. The number of iterations to get
within 10−5 of root at 1:

x = −1: 5 iterations
x = −1.11: 89 iterations
x = −1.5: 28 iterations
x = −2: 16 iterations
x = −3: 28 iterations

23 / 196

Newton’s method on x5 − 1

Iterating x− x5−1
5x4 to find roots.

The starting value matters.

x = 1.5: 1.24, 1.08, 1.01, 1.001994, 1.0000000795

x = 4: 3.20, 2.56, 2.05, 1.65, 1.35, 1.14, 1.03, 1.002,
1.000006, 1.00000000008

x = 10: 8.00, 6.40, 5.12, 4.10, 3.28, 2.62, 2.10, 1.69, 1.38,
1.16, 1.04, 1.00264, 1.0000140, 1.00000000039

x = .1: 2000, 1600, 1280, 1024, [33 more iterations. . .],
1.000956, 1.0000018

Negatives are funny. The number of iterations to get
within 10−5 of root at 1:

x = −1: 5 iterations
x = −1.11: 89 iterations
x = −1.5: 28 iterations
x = −2: 16 iterations
x = −3: 28 iterations

24 / 196

Newton’s method on x5 − 1

Iterating x− x5−1
5x4 to find roots.

The starting value matters.

x = 1.5: 1.24, 1.08, 1.01, 1.001994, 1.0000000795

x = 4: 3.20, 2.56, 2.05, 1.65, 1.35, 1.14, 1.03, 1.002,
1.000006, 1.00000000008

x = 10: 8.00, 6.40, 5.12, 4.10, 3.28, 2.62, 2.10, 1.69, 1.38,
1.16, 1.04, 1.00264, 1.0000140, 1.00000000039

x = .1: 2000, 1600, 1280, 1024, [33 more iterations. . .],
1.000956, 1.0000018

Negatives are funny. The number of iterations to get
within 10−5 of root at 1:

x = −1: 5 iterations
x = −1.11: 89 iterations
x = −1.5: 28 iterations
x = −2: 16 iterations
x = −3: 28 iterations

25 / 196

Newton’s method on x5 − 1

Iterating x− x5−1
5x4 to find roots.

The starting value matters.

x = 1.5: 1.24, 1.08, 1.01, 1.001994, 1.0000000795

x = 4: 3.20, 2.56, 2.05, 1.65, 1.35, 1.14, 1.03, 1.002,
1.000006, 1.00000000008

x = 10: 8.00, 6.40, 5.12, 4.10, 3.28, 2.62, 2.10, 1.69, 1.38,
1.16, 1.04, 1.00264, 1.0000140, 1.00000000039

x = .1: 2000, 1600, 1280, 1024, [33 more iterations. . .],
1.000956, 1.0000018

Negatives are funny. The number of iterations to get
within 10−5 of root at 1:

x = −1: 5 iterations
x = −1.11: 89 iterations
x = −1.5: 28 iterations
x = −2: 16 iterations
x = −3: 28 iterations

26 / 196

Newton’s method on x5 − 1

Iterating x− x5−1
5x4 to find roots.

The starting value matters.

x = 1.5: 1.24, 1.08, 1.01, 1.001994, 1.0000000795

x = 4: 3.20, 2.56, 2.05, 1.65, 1.35, 1.14, 1.03, 1.002,
1.000006, 1.00000000008

x = 10: 8.00, 6.40, 5.12, 4.10, 3.28, 2.62, 2.10, 1.69, 1.38,
1.16, 1.04, 1.00264, 1.0000140, 1.00000000039

x = .1: 2000, 1600, 1280, 1024, [33 more iterations. . .],
1.000956, 1.0000018

Negatives are funny. The number of iterations to get
within 10−5 of root at 1:

x = −1: 5 iterations
x = −1.11: 89 iterations
x = −1.5: 28 iterations
x = −2: 16 iterations
x = −3: 28 iterations

27 / 196

Newton’s method on x5 − 1

Iterating x− x5−1
5x4 to find roots.

The starting value matters.

x = 1.5: 1.24, 1.08, 1.01, 1.001994, 1.0000000795

x = 4: 3.20, 2.56, 2.05, 1.65, 1.35, 1.14, 1.03, 1.002,
1.000006, 1.00000000008

x = 10: 8.00, 6.40, 5.12, 4.10, 3.28, 2.62, 2.10, 1.69, 1.38,
1.16, 1.04, 1.00264, 1.0000140, 1.00000000039

x = .1: 2000, 1600, 1280, 1024, [33 more iterations. . .],
1.000956, 1.0000018

Negatives are funny. The number of iterations to get
within 10−5 of root at 1:

x = −1: 5 iterations
x = −1.11: 89 iterations
x = −1.5: 28 iterations
x = −2: 16 iterations
x = −3: 28 iterations

28 / 196

Newton’s method on x5 − 1

Iterating x− x5−1
5x4 to find roots.

The starting value matters.

x = 1.5: 1.24, 1.08, 1.01, 1.001994, 1.0000000795

x = 4: 3.20, 2.56, 2.05, 1.65, 1.35, 1.14, 1.03, 1.002,
1.000006, 1.00000000008

x = 10: 8.00, 6.40, 5.12, 4.10, 3.28, 2.62, 2.10, 1.69, 1.38,
1.16, 1.04, 1.00264, 1.0000140, 1.00000000039

x = .1: 2000, 1600, 1280, 1024, [33 more iterations. . .],
1.000956, 1.0000018

Negatives are funny. The number of iterations to get
within 10−5 of root at 1:

x = −1: 5 iterations
x = −1.11: 89 iterations
x = −1.5: 28 iterations
x = −2: 16 iterations
x = −3: 28 iterations

29 / 196

Let’s graph this

A plot of how many iterations before convergence.
Darker = less, yellow means ≥ 50

30 / 196

What about the complex roots?

Try a complex starting value: x = 0.2 + 0.8i:
Takes 4 iterations

0.401 + 0.999i
0.327 + 0.948i
0.309 + 0.950i
0.30901699437494745 + 0.9510565162951535i

This finds cos
(
2π
5

)
+ sin

(
2π
5

)
i.

On the other hand, .573 + .46i takes 41 iterations.

31 / 196

What about the complex roots?

Try a complex starting value: x = 0.2 + 0.8i:
Takes 4 iterations

0.401 + 0.999i
0.327 + 0.948i
0.309 + 0.950i
0.30901699437494745 + 0.9510565162951535i

This finds cos
(
2π
5

)
+ sin

(
2π
5

)
i.

On the other hand, .573 + .46i takes 41 iterations.

32 / 196

Let’s graph it.

33 / 196

Fractal structure

Demo time!

34 / 196

Fractal structure

35 / 196

Fractal structure

36 / 196

What’s happening?

Newton’s method is a type of fixed point iteration. The
roots are the fixed points and are attracting.

Iterates pulled towards them.

Sometimes a fight breaks out between two roots, and
sometimes they both lose.

The next picture shows what root each starting point is
attracted to.

37 / 196

What’s happening?

Newton’s method is a type of fixed point iteration. The
roots are the fixed points and are attracting.

Iterates pulled towards them.

Sometimes a fight breaks out between two roots, and
sometimes they both lose.

The next picture shows what root each starting point is
attracted to.

38 / 196

What’s happening?

Newton’s method is a type of fixed point iteration. The
roots are the fixed points and are attracting.

Iterates pulled towards them.

Sometimes a fight breaks out between two roots, and
sometimes they both lose.

The next picture shows what root each starting point is
attracted to.

39 / 196

What’s happening?

Newton’s method is a type of fixed point iteration. The
roots are the fixed points and are attracting.

Iterates pulled towards them.

Sometimes a fight breaks out between two roots, and
sometimes they both lose.

The next picture shows what root each starting point is
attracted to.

40 / 196

Coloring by root

41 / 196

Orbits

Demo time!

42 / 196

A particular orbit

43 / 196

f(z) = zc − 1 in general

What about f(z) = zc − 1 for other values of c?

Want a sense for what to expect without having to try too
many values.

Need the idea of an index set.

For each value of c, imagine doing the plot but using a
single point on the plot to represent the entire picture.

We’ll use z = −1 as the representative point.

44 / 196

f(z) = zc − 1 in general

What about f(z) = zc − 1 for other values of c?

Want a sense for what to expect without having to try too
many values.

Need the idea of an index set.

For each value of c, imagine doing the plot but using a
single point on the plot to represent the entire picture.

We’ll use z = −1 as the representative point.

45 / 196

f(z) = zc − 1 in general

What about f(z) = zc − 1 for other values of c?

Want a sense for what to expect without having to try too
many values.

Need the idea of an index set.

For each value of c, imagine doing the plot but using a
single point on the plot to represent the entire picture.

We’ll use z = −1 as the representative point.

46 / 196

f(z) = zc − 1 in general

What about f(z) = zc − 1 for other values of c?

Want a sense for what to expect without having to try too
many values.

Need the idea of an index set.

For each value of c, imagine doing the plot but using a
single point on the plot to represent the entire picture.

We’ll use z = −1 as the representative point.

47 / 196

f(z) = zc − 1 in general

What about f(z) = zc − 1 for other values of c?

Want a sense for what to expect without having to try too
many values.

Need the idea of an index set.

For each value of c, imagine doing the plot but using a
single point on the plot to represent the entire picture.

We’ll use z = −1 as the representative point.

48 / 196

Newton index set

Demo time!

49 / 196

Newton Index Set

50 / 196

Newton, c ≈ −5.4 + 1.5i

51 / 196

Newton, c ≈ 5.475 + 4.45i

52 / 196

The complex logarithm

ln z = ln |z|+ i arg z

Take branch where −π < arg z ≤ π.

53 / 196

Complex exponentiation

ln z = ln |z|+ i arg z

ex+iy = exeiy = ex(cos y + i sin y)

zc = ec ln(z)

54 / 196

f(z) = c sin (ln z)

sin (x+ iy) = sinx cosh y + i cosx sinh y

ln z = ln |z|+ i arg z

Different values of c produce wildly different pictures.

55 / 196

f(z) = c sin(ln z), c = .01 + .99i

56 / 196

c sin (ln z), c = −1 + 2.25i

57 / 196

c sin (ln z), c = 2.29− 6.55i

58 / 196

Index set for c sin (ln z)

59 / 196

An interesting piecewise function

Call it γ(z).

60 / 196

f(z) = zγ(z)

61 / 196

f(z) = zγ(z)

62 / 196

f(z) = zγ(z)

Given z = reiθ, f(z) is described by
r 7→

√
2r, θ 7→ θ + 45◦ center box

r, θ constant strips
r, θ 7→ 0 elsewhere

63 / 196

f(z) = zγ(z)

64 / 196

f(z) = zγ(z)

65 / 196

f(z) = zγ(z)

66 / 196

Orbits

Demo time!

67 / 196

c = 1.1

68 / 196

c = 1.1

f(z) is described by:
(1.1
√
2, 45◦) center box

(1.1, 0◦) strips
(0, 0◦), elsewhere

In the outside strips, the small dilation leads to slow
convergence. Points within the square eventually get pushed
into the outside strips.

69 / 196

c = 1.1

70 / 196

Orbits

Demo time!

71 / 196

c = 1.1 + .01i

Adding a small imaginary term adds a bit of rotation, but no
major change.

72 / 196

c =
√
2
2 +

√
2
2 i

73 / 196

c =
√
2
2 +

√
2
2 i

f(z) is described by
(
√
2, 90◦) center box

(1, 45◦) strips
(0, 0◦), elsewhere

74 / 196

c =
√
2
2 +

√
2
2 i

Many points will cycle endlessly.

75 / 196

c =
√
2
2 +

√
2
2 i

Where the green boxes and diamonds come from:

76 / 196

Orbits

Demo time!

77 / 196

c = .700 + .709i

Move from c ≈ .707 + .707i to .700 + .709i.

78 / 196

c = .700 + .709i

The red circles are the actual iterates. Rotation is not quite
45◦. The slight perturbation adds up.

79 / 196

c = .926 + .381i

80 / 196

c = .926 + .384i

81 / 196

c = .655 + .653i

82 / 196

c = .561 + .667i

83 / 196

c = .752 + .516i

84 / 196

c = .489 + .765i

85 / 196

c = .870 + .504i

86 / 196

c =
√
3
2 + 1

2i

87 / 196

c =
√
3
2 + 1

2i

f(z) is described by
(
√
2, 75◦) center box

(1, 30◦) strips
(0, 0◦), elsewhere

88 / 196

c =
√
3
2 + 1

2i

Get cycles again because 360 is divisible by 30.

89 / 196

c =
√
3
2 + 1

2i

90 / 196

Index set

For each value of c, see what color we get when we iterate
starting at z = 1.

91 / 196

Index set

Demo time!

92 / 196

Index set close-up

Color of z = 1 is somewhat representative of the entire image.

93 / 196

c = .337 + .151i

94 / 196

c = .584 + .287i

95 / 196

c = .381 + .683i

96 / 196

c = .1139 + .271i

97 / 196

c = .854 + .465i

98 / 196

Things to try

Other piecewise functions

Change z to z2 or something else

Other types of transformations

99 / 196

Gallery

Here follows a gallery of some interesting pictures.

100 / 196

f(z) = zc, c = −1.09 + .197i

101 / 196

f(z) = zz
c

102 / 196

f(x+ iy) = c(sinx)(cos y)(1− y), c = .76− .53i

103 / 196

c · ln (sin z)

104 / 196

c · ln (sin z)

105 / 196

c · ln (sin z)

106 / 196

c · ln (sin z)

107 / 196

c · ln (sin z)

108 / 196

c · ln (sin z)

109 / 196

c · ln (sin z)

110 / 196

c · ln (sin z)

111 / 196

c · sin (ln (sin (ln z)))

112 / 196

c · sin (ln (sin (ln z)))

113 / 196

c · ln (cos z)

114 / 196

c · ln (cos z)

115 / 196

c · ln (csc z)

116 / 196

c · ln (csc z)

117 / 196

c · ln z4

118 / 196

c · ln z2

119 / 196

c · ln z3

120 / 196

c · ln z3

121 / 196

c · ln z4

122 / 196

c · ln (z · sin z)

123 / 196

c · ln (z · sin z)

124 / 196

c · ln (z · sin z)

125 / 196

c · ln (z · sin z)

126 / 196

c · ln (cos (z + c))

127 / 196

c · sec (1/z2)

128 / 196

c · csc (1/z)

129 / 196

sec (cz)

130 / 196

|z/(cos (c · sin z))|

131 / 196

Re(z/(cos (c · sin z)))

132 / 196

z − (zc + z − 1)/(czc−1 + 1)

133 / 196

z − (zc + z − 1)/(czc−1 + 1)

134 / 196

z − (zc + z − 1)/(czc−1 + 1)

135 / 196

z − (zc + z − 1)/(czc−1 + 1)

136 / 196

zic

137 / 196

Some unusual functions

“absn” function: absn(z) = |z|+ i Im(z)

“floor” function: floor(x+ iy) = floor(x) + i · floor(y)

“and” function: (x+ iy)&(a+ ib) = (x&a) + i(y&b)

138 / 196

absn(z2) + i · absn(1/z) + c

139 / 196

absn(z − (zc − 1)/(czc−1))

140 / 196

floor(cz)

141 / 196

c floor(sec(z))

142 / 196

c(x%Re(sin(z)) + iy%Im(sin(z)))

143 / 196

c(x%Re(sin(z)) + iy%Im(sin(z)))

144 / 196

c((x&y) · (x < 0) + z · (x > 0))

145 / 196

c((x&y) · (x < 0) + z · (x > 0))

146 / 196

c(floor(z) · (x > 0) + ceil(z) · (x < 0))

147 / 196

c · floor(csc z sec z)

148 / 196

cz(!x+ (x&y))

149 / 196

f(x+ iy) = (x+ iy)(χ(−1,1)(x) + (x&y)), c = .76− .53i

150 / 196

Iterating the floor function

Define
F (z) = ⌊x⌋+ i⌊y⌋, where z = x+ iy.

We will be iterating cF (z) for various values of the constant c.

151 / 196

c = .6

152 / 196

c = .6 + .01i

153 / 196

c = .6 + .02i

154 / 196

c = .6 + .02i false color

155 / 196

c = .6 + .03i

156 / 196

c = .6 + .1i

157 / 196

c = .6 + .1i sharper gradient

158 / 196

c = .6 + .3i

159 / 196

c = .6 + .3i sharper gradient

160 / 196

c = .51 + .56i

161 / 196

c = .94 + .09i

162 / 196

c = .96 + .06i

163 / 196

c = .99 + .01i

164 / 196

c = .5 + .5i

165 / 196

c = .5 + .5i

166 / 196

c ≈ .5 + .5i

167 / 196

c ≈ .5 + .5i

168 / 196

c = 1.14

169 / 196

c = 1.14 + .04i

170 / 196

c = 1.13 + .1i

171 / 196

c = 1.12 + .24i

172 / 196

c = 1.07 + .41i

173 / 196

c = 1.02 + .5i

174 / 196

c = .91 + .69i

175 / 196

c = .84 + .78i

176 / 196

c = .81 + .81i

177 / 196

c = .04 + 1.04i

178 / 196

c = .68 + .77i

179 / 196

Index set

Look at what happens to the point 50 + 50i under iteration for
various values of c.

180 / 196

Inside unit circle vs outside

181 / 196

Inside unit circle vs outside

182 / 196

Outside the unit circle

Outside: Iterates attracted to ∞.

Iteration determined by relatively simple interaction between:

Rotation from multiplying by complex values of c

Floor function

The norm used. Iterates “converge” to ∞ when |x| > 106

or |y| > 106. Using the Euclidean norm removes all
interesting behavior.

183 / 196

Inside the unit circle

Inside: Iterates attracted to various fixed points.

Iteration determined by

Rotation from multiplying by complex values of c

Floor function

184 / 196

Closer look at c = .6

Nine fixed points: all the points of
{−1.2,−.6, 0} × {−1.2,−.6, 0}

Box n = {points mapping to fixed point in n iterations}

185 / 196

Closer look at c = .6 + .1i

186 / 196

Closer look at c = .6 + .1i in false color

187 / 196

Fixed points when c = .6 + .1i

Fixed points:
(.1,−.6), (−.5,−.7), (.2,−1.2), (0, 0), (−1.1,−.8), (−.4,−1.3)

188 / 196

Slanted grid for c = .6 + .1i

All iterates constrained to move along slanted grid (slopes 1/6
and -6).

189 / 196

Slanted grid for c = .6 + .1i

Interaction between rectangular grid induced by floor and
slanted grid induced by complex multiplication

Can describe this iteration purely in terms of rotations,
dilations, and “snapping to the grid.”

190 / 196

Closer look at c = .43 + .23i

Each colored segment is a “copy” of one before it, becoming
more complex in a fractal-like way.

191 / 196

c = .43 + .23i

192 / 196

c = .43 + .23i false color

193 / 196

Far zoom out of a section from c = .43 + .23i

194 / 196

c = .78 + .14i sharper gradient

195 / 196

c = .64 + .34i sharper gradient

196 / 196

