MAA MD-DC-VA Fall 2010

Patterns and Number Theory Brian Heinold Mount St. Mary's University

This is work with Jackie Kearney who researched this for her senior honors project.

- Plot $\{(x,y): f(x,y) \equiv 0 \pmod{n}\}$
- Various functions f(x, y) and values of n
- Usually x, y between 0 and n or 2n

$\{(x,y): xy \equiv 0 \pmod{15}\}$

▲ロト ▲暦 ▶ ▲ 国 ▶ ▲ 国 ■ ● の Q @

$\{(x,y): xy \equiv 0 \pmod{15}\}$

$\dot{\dot{a}}$	** **	** **	00 00 00
$\dot{\cdot}$	0 0 0 0	$\frac{1}{2}$	000 000
$\dot{\cdot}$	$\dot{\circ}\dot{\circ}\dot{\circ}\dot{\circ}\dot{\circ}$	$\dot{\circ}\dot{\circ}\dot{\circ}\dot{\circ}\dot{\circ}$	$\dot{\dot{\gamma}}$

◆□ > ◆母 > ◆ヨ > ◆ヨ > = = • • ● ●

$\{(x,y): xy \equiv 0 \pmod{15}\}$

▲ロト ▲暦 ▶ ▲ 国 ▶ ▲ 国 ■ ● の Q @

• If
$$xy \equiv 0 \pmod{n}$$
, then
 $(n-x)y \equiv ny - xy \equiv 0 \pmod{n}$.

• Similarly
$$x(n-y) \equiv 0 \pmod{n}$$

• As x and y are interchangeable, there is symmetry across y = x

 $\{(x,y): xy \equiv 0 \pmod{n}\} \text{ for } n = 1 \text{ to } 30$

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

Get a blank box if n is prime

$$\begin{array}{l} xy \equiv 0 \pmod{n} \\ \Leftrightarrow n \mid xy \\ \text{Euclid's Lemma} \Rightarrow n \mid x \text{ or } n \mid y \\ \text{But } 0 < x, y < n. \end{array}$$

Grids

Get a grid pattern if $n = p^2$ for an odd prime p.

 $\begin{array}{l} xy \equiv 0 \pmod{p^2} \\ \Leftrightarrow p^2 \mid xy \\ \text{Then } p \mid xy. \\ \text{Euclid's Lemma implies } p \mid x \text{ or } p \mid y. \\ \text{So only get points of form } (ip, jp) \end{array}$

 $\{(x,y): xy \equiv 0 \pmod{n}\} \text{ for } n = 2 \text{ to } 30$

${(x,y): x^2 + y^2 \equiv 0 \pmod{n}}$ for n = 2 to 30

2 X	3	4	5 .0.	6	7	8	9	10		12	13	14
•	15	-	::	16	17		18	-	19	2		21
•	2:	2	-	•	•	-	24	•	25		26	
•	•	27	•		28	•		29		•	30	
		•	•									

• Theorem of Fermat: An odd prime is the sum of two squares if and only if it is of the form 4k + 1.

41

4k + 1 primes (plots in range 0 to 2n)

59

 71

·... 2 . ··· · : . : : ۰. ۰. .. ١, 2 ÷ ż . ς. .

${(x,y): x^2 + y^2 \equiv 0 \pmod{n}}$ for n = 2 to 30

2 X	3	4	5 .0.	6	7	8	9	10		12	13	14
•	15	-	::	16	17		18	-	19	2		21
•	2:	2	-	•	•	-	24	•	25		26	
•	•	27	•		28	•		29		•	30	
		•	•									

- *n* is the sum of two squares iff each 4k + 3 prime in the prime factorization of *n* is raised to an even power.
- This explains:
 - Why 21 is also blank
 - Why various types of grids appear

 $\{(x,y): (x^2-1)(y^2-1) \equiv 0 \pmod{n} \}$

□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ □ ● ○○○○

$\{(x,y): (x^2-1)(y^2-1) \equiv 0 \pmod{n}\}$

	49										
::	::	::	::	::	::						
		::	::								
<u> </u>	••	••									

50

-			
-			
		~~	
	_		
	2 22 1	** 22	
-			
-	• ••		

		54	
	:ë:	÷	:Ö:
ုင္းျဖစ္ျင္း	÷Ö	:8:	•••••• ••;

- -

$\{(x,y): (x^2-1)(y^2-1) \equiv 0 \pmod{n} \}$

		•••	••			
•	2	- 22	~ ~	,	•	
:	ŝ	×	ä:	S,	:	
:	3	: 22	% :	5	:	
	R.	. XA	ä,	2		
	•	••	••			

:×.	: <u>:</u> :::	:×.
::-	Ŷ~:?*Ŷ	
::::	:::8::l	:::
	ϕ is ϕ	
·	1.88.1	· še ·
<u>~</u> ;·	1.11	·

		1:33	
	E38		8334
Lejjact_djecia.			315

6	3
---	---

×,	23	8	8	8	8
\approx :	*	:3	83	8	:3
$ \mathcal{S} $	$\overline{\otimes}$	8	8	$\overline{\otimes}$	Î×,
×;	8	×.	×;	8	×
©:	*	:3	8	8	::::
8	\ddot{s}	8	8	12	8

		-į	(
	_!		<u></u>	- 1		- I	•
:			13	22			:]
:			12	5	151		:
	Ľ	- 1	i 3	. <u>p</u> .			-
17	. [17	572	- <u>1</u> 2.	1579		27
		. 1	<u>t : 1</u>	<u>-1</u>	<u> </u>	-	
	•	-3	13	2.	:)··]		

$\{(x,y): xy(x^2 - 4y^2)(4x^2 - y^2) \equiv 0 \pmod{n}\}$

$\{(x,y): xy(x^2 - 4y^2)(4x^2 - y^2) \equiv 0 \pmod{n}\}$

66

$\{(x,y): xy(x^2 - 4y^2)(4x^2 - y^2) \equiv 0 \pmod{n}\}$

 $\{(x,y): (x^2 - y^2)(x^2 - 4y^2)(4x^2 - y^2) \equiv 0 \pmod{n}\}$

 $\{(x,y): (x^2 - y^2)(x^2 - 4y^2)(4x^2 - y^2) \equiv 0 \pmod{64}\}$

 $\{(x,y) : xy(x^4 - y^4) \equiv 0 \pmod{n}\}$

 $\{(x,y): xy(x^4 - y^4) \equiv 0 \pmod{n}\}$

Filled box for 30

・ロト ・母 ト ・ ヨ ト ・ ヨ ・ りへぐ