MAA MD-DC-VA Section meeting, April 2014

Automatic Differentiation
Brian Heinold
Mount St. Mary's University

Why numerical differentiation?

Derivatives are easy. Why estimate them numerically?

Why numerical differentiation?

Derivatives are easy. Why estimate them numerically?

- Useful for really complicated functions (especially ones defined by a program)
- Useful in some other methods, like the finite-element method for differential equations

The usual approach

Start with the definition of the derivative:

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Choosing a small value of h gives an estimate of f'(x).

The usual approach

Start with the definition of the derivative:

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Choosing a small value of h gives an estimate of f'(x).

For example, if $f(x) = \sin x$, then

$$f'(1) \approx \frac{\sin(1 + .0001) - \sin(1)}{.0001} = .54026$$

(Exact value is .54030...)

A small problem

Mathematically, smaller values of h should give closer estimates, but that's not the case in practice.

h	$\frac{(3+h)^2-3^2}{h}$
0.1	6.1000000000000012
0.001	6.000999999999479
10^{-5}	6.000009999951316
10^{-7}	6.000000087880153
10^{-9}	6.000000496442226
10^{-11}	6.000000496442226
10^{-13}	6.004086117172844
10^{-15}	5.329070518200751

What's the problem?

The first 30 digits of the floating-point representation of $(3+h)^2$, where $h=10^{-13}$:

9.000000000000600408611717284657

The last three "correct" digits are 6 0 0. Everything after that is an artifact of the floating-point representation.

When we subtract 9 from this and divide by 10^{-13} , all of the digits starting with the that 6 are "promoted" to the front, and we get 6.004086..., which is only correct to the second decimal place.

More accurate formulas

There are more accurate formulas, such as

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h},$$

$$f'(x) \approx \frac{f(x-h) - 8f(x-h/2) + 8f(x+h/2) - f(x+h)}{6h}.$$

More accurate formulas

There are more accurate formulas, such as

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h},$$

$$f'(x) \approx \frac{f(x-h) - 8f(x-h/2) + 8f(x+h/2) - f(x+h)}{6h}.$$

But these still suffer from the same problem.

Taylor series

Taylor series expansion for f(x+h):

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2!}h^2 + \frac{f'''(x)}{3!}h^3 + \dots$$

From this we get

$$f'(x) = \frac{f(x+h) - f(x)}{h} + \underbrace{\frac{f''(x)}{2!}h + \frac{f'''(x)}{3!}h^2 + \dots}_{\text{Error}}.$$

Dual numbers

- Recall that imaginary numbers are defined by creating a new (nonreal) number i with the property $i^2 = -1$.
- Let's create a new (nonreal) number ϵ with the property that $\epsilon^2 = 0$.
- Note that ϵ is not 0.
- The set of dual numbers consists of all expressions of the form $a + b\epsilon$, with $a, b \in \mathbb{R}$.

Operations

• Addition:
$$(a + b\epsilon) \pm (c + d\epsilon) = (a \pm c) + (b \pm d)\epsilon$$

- Multiplication: $(a + b\epsilon)(c + d\epsilon) = ac + (ad + bc)\epsilon$
- Division: (Multiply by the conjugate)

$$\frac{a+b\epsilon}{c+d\epsilon} \cdot \frac{c-d\epsilon}{c-d\epsilon} = \frac{a}{c} + \frac{bc-ad}{c^2}\epsilon$$

Key observation

Taylor series expansion for $f(x + \epsilon)$:

$$f(x + \epsilon) = f(x) + f'(x)\epsilon + \frac{f''(x)}{2!}\epsilon^2 + \frac{f'''(x)}{3!}\epsilon^3 + \dots$$

All of the higher order terms are 0, since ϵ^2 , ϵ^3 , etc. are all 0.

Key observation

Taylor series expansion for $f(x + \epsilon)$:

$$f(x+\epsilon) = f(x) + f'(x)\epsilon + \frac{f''(x)}{2!}\epsilon^2 + \frac{f'''(x)}{3!}\epsilon^3 + \dots$$

All of the higher order terms are 0, since ϵ^2 , ϵ^3 , etc. are all 0. So the following equation is exact:

$$f(x+\epsilon) = f(x) + f'(x)\epsilon$$

Key observation

Taylor series expansion for $f(x + \epsilon)$:

$$f(x + \epsilon) = f(x) + f'(x)\epsilon + \frac{f''(x)}{2!}\epsilon^2 + \frac{f'''(x)}{3!}\epsilon^3 + \dots$$

All of the higher order terms are 0, since ϵ^2 , ϵ^3 , etc. are all 0. So the following equation is exact:

$$f(x+\epsilon) = f(x) + f'(x)\epsilon$$

If we solve this for the derivative, we get

$$f'(x)\epsilon = f(x) - f(x + \epsilon).$$

So the exact value of the derivative of f at a real number x is gotten from the dual component of $f(x) - f(x + \epsilon)$.

How do we evaluate functions of dual numbers?

A similar Taylor series argument gives us

$$f(a+b\epsilon) = f(a) + bf'(a)\epsilon,$$

How do we evaluate functions of dual numbers?

A similar Taylor series argument gives us

$$f(a+b\epsilon) = f(a) + bf'(a)\epsilon,$$

For instance,

$$\sin(a + b\epsilon) = \sin(a) + b\cos(a)\epsilon.$$

How do we evaluate functions of dual numbers?

A similar Taylor series argument gives us

$$f(a+b\epsilon) = f(a) + bf'(a)\epsilon,$$

For instance,

$$\sin(a+b\epsilon) = \sin(a) + b\cos(a)\epsilon.$$

In particular,

$$\sin\left(\frac{\pi}{3} + 3\epsilon\right) = \frac{\sqrt{3}}{2} + \frac{3}{2}\epsilon.$$

Product, quotient, chain rules

Product, quotient and chain rules are easily shown:

Product, quotient, chain rules

Product, quotient and chain rules are easily shown:

Chain rule:

$$f(g(x+\epsilon)) = f(g(x) + g'(x)\epsilon) = f(g(x)) + g'(x)f'(g(x))\epsilon.$$

Product, quotient, chain rules

Product, quotient and chain rules are easily shown:

Chain rule:

$$f(g(x+\epsilon)) = f(g(x) + g'(x)\epsilon) = f(g(x)) + g'(x)f'(g(x))\epsilon.$$

Product rule:

$$(fg)(x+\epsilon) = f(x+\epsilon)g(x+\epsilon)$$

$$= (f(x) + f'(x)\epsilon)(g(x) + g'(x)\epsilon)$$

$$= f(x)g(x) + (f'(x)g(x) + f(x)g'(x))\epsilon$$

Python implementation

So all we have to do is program in the rules for elementary operations and some common functions and everything will just work.

Part of the Python implementation

```
class Dual:
    def init (self, a, b):
        self.a = a
        self.b = b
    def __add__(self, y):
        if type(y) == int or type(y) == float:
            return Dual (self.a + y, self.b)
        else:
            return Dual(y.a+self.a, y.b+self.b)
    def __radd__(self, y):
        return self.__add__(y)
    def __mul__(self, y):
        if type(y) == int or type(y) == float:
            return Dual(self.a*y, self.b*y)
        else:
            return Dual(y.a*self.a, y.b*self.a + y.a*self.b)
    def __rmul__(self, y):
        return self. mul (v)
    def _pow__(self, e):
        return Dual(self.a ** e, self.b*e*self.a ** (e-1))
```

More of the Python implementation

```
def create_func(f, deriv):
    return lambda D: Dual(f(D.a), D.b*deriv(D.a)) if type(D)==Dual else f(D)

sin = create_func(math.sin, math.cos)
exp = create_func(math.exp, math.exp)
ln = create_func(math.log, lambda x:1/x)
```

```
def autoderiv(s, x):
    f = eval('lambda x: ' + s.replace("^", "**")
    return (f(Dual(x,1))-f(Dual(x,0))).b
```

```
def autoderiv(s, x):
    f = eval('lambda x: ' + s.replace("^", "**")
    return (f(Dual(x,1))-f(Dual(x,0))).b

>>> autoderiv("sin(x)",1)
0.5403023058681397
>>> cos(1)
0.5403023058681397
```

```
def autoderiv(s, x):
    f = eval('lambda x: ' + s.replace("^", "**")
    return (f(Dual(x,1))-f(Dual(x,0))).b

>>> autoderiv("sin(x)",1)
0.5403023058681397
>>> cos(1)
0.5403023058681397

>>> autoderiv("1+2*x+3*x^2", 3)
20
>>> 2 + 6*3
20
```

```
def autoderiv(s, x):
    f = eval('lambda x: ' + s.replace("^", "**")
    return (f(Dual(x,1))-f(Dual(x,0))).b
>>> autoderiv("sin(x)",1)
0.5403023058681397
>>> cos(1)
0.5403023058681397
>>> autoderiv("1+2*x+3*x^2", 3)
20
>>> 2 + 6*3
20
>>> autoderiv("sin(exp(x^2))*ln(x)", 3.24)
254566.1653152972
>> \cos(\exp(3.24**2))*\exp(3.24**2)*2*3.24*\ln(3.24) + \sin(\exp(3.24**2))/3.24
254566.16531529723
```

More info

More about dual numbers

- Quotient of $\mathbb{R}[x]$ by (x^2) .
- Show up in algebraic geometry
- Show up in modern physics

More info

More about dual numbers

- Quotient of $\mathbb{R}[x]$ by (x^2) .
- Show up in algebraic geometry
- Show up in modern physics

Other uses for automatic differentiation

- Also useful for functions defined by computer programs
- Can be applied to higher derivatives
- Can be applied to functions from \mathbb{R}^n to \mathbb{R}^m