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Graphs

Network of points (vertices) and lines (edges)
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Graph coloring

Assign colors (usually numbers) to vertices so that neighbors get
different colors. Try to use as few colors as possible.
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L(2,1)-labeling

Assign numerical labels to vertices according to the following
rules:

1 Neighbors’ labels must differ by 2.
2 Vertices at distance 2 must get different labels.

Start with 1 and try to keep the labels as small as possible.

1 2 3 4
Breaks rule #1

4 /50



L(2,1)-labeling

Assign numerical labels to vertices according to the following
rules:

1 Neighbors’ labels must differ by 2.
2 Vertices at distance 2 must get different labels.

Start with 1 and try to keep the labels as small as possible.

1 2 3 4
Breaks rule #1

5 /50



L(2,1)-labeling

Assign numerical labels to vertices according to the following
rules:

1 Neighbors’ labels must differ by 2.
2 Vertices at distance 2 must get different labels.

Start with 1 and try to keep the labels as small as possible.

1 3 1 3
Breaks rule #2

6 /50



L(2,1)-labeling

Assign numerical labels to vertices according to the following
rules:

1 Neighbors’ labels must differ by 2.
2 Vertices at distance 2 must get different labels.

Start with 1 and try to keep the labels as small as possible.

1 3 5 7
Okay, but not optimal.
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L(2,1)-labeling

Assign numerical labels to vertices according to the following
rules:

1 Neighbors’ labels must differ by 2.
2 Vertices at distance 2 must get different labels.

Start with 1 and try to keep the labels as small as possible.
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Another example

Assign numerical labels to vertices according to the following
rules:

1 Neighbors’ labels must differ by 2.
2 Vertices at distance 2 must get different labels.

Start with 1 and try to keep the labels as small as possible.

1 5

2 4

3 1

1 3

5 7

9 6

1 5

3 2

4 3

Left graph breaks both rules repeatedly. Middle graph is okay but
uses too many colors. Right graph is optimal.
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Let’s try another
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Let’s try another
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Yet another example
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Yet another example

4 2 1 6
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A challenge

Goal: max label 6
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About the problem

Introduced in 1992 by Griggs and Yeh, based on an idea of F.
Roberts.

Models channel assignment – nearby radio stations interfere
with each other a lot, somewhat close ones interfere a bit,
distant ones don’t interfere.

Well-studied

People are interested in minimizing the largest label used.

We’ll denote it by λ2,1(G).

In the literature, people often talk about the span, the
difference between the largest and smallest labels.
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Simple facts

λ2,1 can be computed quickly for various classes of graphs like
paths, cycles, complete graphs, etc. These are good exercises.

There are many classes of graphs for which λ2,1 is not known.

The problem is NP-complete (i.e., interesting).
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Lower bound

Let ∆(G) (or just ∆) denote the largest vertex degree in G.

The max label λ2,1 must be at least ∆+ 2.

See below for an example.
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Upper bound

With a little more work, we can show the max label λ2,1 is
always less than ∆2 + 2∆+ 1.

Why? A worst-case scenario is shown below. We’re trying
label the middle left vertex. Assume its neighbors have
already been labeled. In this worst-case scenario, we have to
avoid labels 1 through 15. In general, this could be 3∆ labels.

?

2
5

8

11
14

At distance 2, a vertex can have at most ∆(∆− 1) neighbors.
We have to avoid all their labels.

In total, we have to avoid at most 3∆+∆(∆− 1) =∆2 + 2∆
labels.
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Better upper bounds

The preceding was proved by Griggs and Yeh in their
introductory 1992 paper.

The bound has been improved over the years to ∆2 +∆− 1.

The big conjecture is that λ2,1 ≤∆2 + 1.

Note that this bound is tight, as the cycle C5 has ∆= 2 and
λ2,1 = 5.

Havet, Reed, and Sereni showed that the conjecture is true for
sufficiently large ∆.

Sufficiently large here means 1069.

They also showed that λ2,1 ≤∆2 + c for some fixed (but
unfortunately very large) c.
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Relatives and generalizations

Instead of L(2,1), people often look at L(p, q). For example,
L(5,2) would mean neighbors’ labels must differ by at least 5
and vertices at distance 2 must differ by at least 3.

Can also look at L(p, q, r), L(p, q, r, s), etc.

There are also edge versions, list versions, and more.

40 /50



Relatives and generalizations

Instead of L(2,1), people often look at L(p, q). For example,
L(5,2) would mean neighbors’ labels must differ by at least 5
and vertices at distance 2 must differ by at least 3.

Can also look at L(p, q, r), L(p, q, r, s), etc.

There are also edge versions, list versions, and more.

41 /50



Relatives and generalizations

Instead of L(2,1), people often look at L(p, q). For example,
L(5,2) would mean neighbors’ labels must differ by at least 5
and vertices at distance 2 must differ by at least 3.

Can also look at L(p, q, r), L(p, q, r, s), etc.

There are also edge versions, list versions, and more.

42 /50



MathSciNet
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My assignment
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Comments

I’ve used it for several years. Students in a non-majors course
have told me they found it

Fun
Makes their brain hurt
A good challenge

I think it is good for
Developing perseverance, since first attempts often don’t work
Habits of checking work for mistakes
Good for developing problem-solving strategies
It’s not something they have ever seen before

It’s also a good problem for undergrads to work on since it
doesn’t require a lot of background to get started on, and
there are myriad things to work on.
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An app

I find L(2, 1)-labelling works well as a puzzle. It’s easy to make
mistakes, though. I built a simple app that checks your work.

https://www.brianheinold.net/L21.html

You can view source on the page to see the code. Adding new
graphs is quick.
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App

49 /50



The end

Thank you!
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