

This is work with Jackie Kearney who researched this for her senior honors project.

Given a function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ and an integer n, a *divisibility* plot is a plot of all the points (x, y) for which $n \mid f(x, y)$.

Divisibility plot of f(x, y) = xy for n = 15

$\frac{1}{2}$	$\dot{\circ}$	$\dot{\dot{\phi}}$	$\dot{\dot{\gamma}}$
$\frac{1}{2}$	$\dot{\phi}$	$\dot{\dot{\phi}}$	$\dot{\dot{\dot{v}}}$
$\frac{1}{2}$	$\dot{\circ}\dot{\circ}\dot{\circ}\dot{\circ}\dot{\circ}$	$\dot{\circ}$	** **
000 000	000 000	** **	** ***

◆□▶ ◆母▶ ★ヨ≯ ★ヨ▶ → 田 ◆ ○♀○

Divisibility plots of f(x, y) = xy for n from 2 to 30

Divisibility plots of f(x, y) = xy for n from 2 to 30

Consequences of Euclid's lemma:

- Primes are blank
- Grid pattern for perfect squares

$f(x, y) = x^2 + y^2$ for n from 2 to 30

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 三厘 - 釣�?

$f(x,y) = x^2 + y^2$ for *n* from 2 to 30

4k + 3 primes – mostly empty 4k + 1 primes – lots of points Theorem of Fermat: Odd primes are sum of two squares iff they are of the form 4k + 1

$f(x,y) = x^2 + y^2$ for *n* from 2 to 30

Generalization of Fermat's theorem: An integer n can be written as the sum of two squares if and only if each 4k + 3prime in the prime factorization of n is raised to an even power.

Explains why 21 is blank, explains various grid patterns.

Only a few points matter

Each plot actually boils down to a handful of points and the symmetry arises from various transformations of those points.

- Symmetry about the lines x = (p-1)/2, y = (p-1)/2, and $y = \pm x$.
- If (x_0, y_0) satisfies $n \mid (x^2 + y^2)$, then (ax_0, ay_0) does, too.
- For each x value we get exactly one y in the range 0 to (p-1)/2 such that $p \mid (x^2 + y^2)$ (can show using Euler's criterion for quadratic residues, Fermat's Little Theorem, and Lagrange's theorem)

4k + 1 primes (plot range is 0 to 2n)

 $f(x,y) = xy(x^2 - 4y^2)(4x^2 - y^2)$ for n from 2 to 30

$f(x,y) = xy(x^2 - 4y^2)(4x^2 - y^2)$ for a few values of n

56

81

- ▲ 문 ▶ - ▲ 문 ▶ - - 문

$f(x,y) = (x^2 - 1)(y^2 - 1)$ for *n* from 2 to 30

$f(x,y) = (x^2 - 1)(y^2 - 1)$ for a few values of n

	3	. 5		_	L
•	•••	••	-		Ε
	ŝ	ž	×	•	
	ä	8: 2:	Ś	:	
•	•••	••	•		
					-

	42	
		:æ.
:3:) :::: 	::::::
	:8:	:%:

~	
•	
~	~

63

×;	<u>88</u>	8	×;	8	iX.
\approx	窓	13	\$;;	8	:3
×.	ŝŝ	.×	8	ŝ	į×.
×į	8: :	×.	8,	22	į×.
\approx	窓	:3	\$;;	8	:3
×.	$\ddot{\otimes}$	28	8	÷.	ÎX,

					j.		
	_!			- ! .			·
		23	13				ί.
		63	12	1			:
F.,				-62-			
<u> </u>			13	====			
		2	3	2			
		. 1	ī .ī	1.		i	
	- 1		1	2.) · ·		

◆□ > ◆母 > ◆ヨ > ◆ヨ > = = • • ● ●

 $f(x,y) = (x^2 - y^2)(x^2 - 4y^2)(4x^2 - y^2)$ for n from 2 to 30

 $f(x,y) = (x^2 - y^2)(x^2 - 4y^2)(4x^2 - y^2)$ for n = 64

 $f(x,y) = xy(4x^4 + 2xy + 4y^4)$ for n = 32

《曰》 《聞》 《臣》 《臣》 三臣