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Important facts about logarithms

1 The solution to bx = c is x = logb(c) =
ln c

ln b

2 log(xy) = log(x) + log(y)

That is, a multiplicative change in the input corresponds to
an additive change in the output.

For example:
x y = 12 log10(x)

1 0
10 12
100 24
1000 36
10000 48



Rolling dice

Roll 5 dice, like you’re playing Yahtzee. Keep going until
all the dice are the same value, at each step always keeping
the maximum number of identical dice for the next step.

How many rolls will it take, on average, until all the dice
are the same? About 11

What if we had 10 dice? About 15.3
100 dice? About 28.6
1000 dice? About 41.5
10000 dice? About 54.2

A multiplicative change of 10 in the number of dice
corresponds to an additive change of roughly 13 in the
number of rolls.
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Dice and logs

Why is this?

Idea: With each new roll, we expect to add about 1/6 of
the remaining dice to our pile.

So roughly, if we start with N dice, solving N
(
5
6

)k
= 1 will

tell us how long it takes to get down to one die remaining.

This gives k = log6/5(N).

Add 6 to this for the number of rolls needed for the last die
and you get a decent approximation to the answer.

Increasing N by a factor of 10 corresponds to an increase of

log6/5(10N)− log6/5(N) = log6/5(10) ≈ 12.6 rolls.



Dice and logs

Why is this?

Idea: With each new roll, we expect to add about 1/6 of
the remaining dice to our pile.

So roughly, if we start with N dice, solving N
(
5
6

)k
= 1 will

tell us how long it takes to get down to one die remaining.

This gives k = log6/5(N).

Add 6 to this for the number of rolls needed for the last die
and you get a decent approximation to the answer.

Increasing N by a factor of 10 corresponds to an increase of

log6/5(10N)− log6/5(N) = log6/5(10) ≈ 12.6 rolls.



Dice and logs

Why is this?

Idea: With each new roll, we expect to add about 1/6 of
the remaining dice to our pile.

So roughly, if we start with N dice, solving N
(
5
6

)k
= 1 will

tell us how long it takes to get down to one die remaining.

This gives k = log6/5(N).

Add 6 to this for the number of rolls needed for the last die
and you get a decent approximation to the answer.

Increasing N by a factor of 10 corresponds to an increase of

log6/5(10N)− log6/5(N) = log6/5(10) ≈ 12.6 rolls.



Dice and logs

Why is this?

Idea: With each new roll, we expect to add about 1/6 of
the remaining dice to our pile.

So roughly, if we start with N dice, solving N
(
5
6

)k
= 1 will

tell us how long it takes to get down to one die remaining.

This gives k = log6/5(N).

Add 6 to this for the number of rolls needed for the last die
and you get a decent approximation to the answer.

Increasing N by a factor of 10 corresponds to an increase of

log6/5(10N)− log6/5(N) = log6/5(10) ≈ 12.6 rolls.



Dice and logs

Why is this?

Idea: With each new roll, we expect to add about 1/6 of
the remaining dice to our pile.

So roughly, if we start with N dice, solving N
(
5
6

)k
= 1 will

tell us how long it takes to get down to one die remaining.

This gives k = log6/5(N).

Add 6 to this for the number of rolls needed for the last die
and you get a decent approximation to the answer.

Increasing N by a factor of 10 corresponds to an increase of

log6/5(10N)− log6/5(N) = log6/5(10) ≈ 12.6 rolls.



Dice and logs

Why is this?

Idea: With each new roll, we expect to add about 1/6 of
the remaining dice to our pile.

So roughly, if we start with N dice, solving N
(
5
6

)k
= 1 will

tell us how long it takes to get down to one die remaining.

This gives k = log6/5(N).

Add 6 to this for the number of rolls needed for the last die
and you get a decent approximation to the answer.

Increasing N by a factor of 10 corresponds to an increase of

log6/5(10N)− log6/5(N) = log6/5(10) ≈ 12.6 rolls.



Benford’s Law

In real-life data spread across a few orders of magnitude,
numbers starting with a 1 or a 2 are way more common
than numbers starting with 8 or 9.

Benford’s Law has been applied to molecular weights,
baseball stats, census data, revenue figures, stock prices,
street addresses, lengths of rivers, . . .

It is used to detect financial fraud.

Example: Body weights

Doesn’t take too much to go from 70 to 80 or 80 to 90
pounds, but it takes a lot to go from 100 to 200 pounds.

80 to 90 is an increase of about 12%, while 100 to 200
requires a doubling.
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Like a slide rule

Look at how much bigger on a log scale the gap from 1 to 2 is
versus the gap from 8 to 9.



Benford’s Law

The formula below gives the probability of starting with
digit d:

P (d) = log10(d+ 1)− log10(d) = log10

(
1 +

1

d

)
1 30.1 6 6.7
2 17.6 7 5.8
3 12.5 8 5.1
4 9.7 9 4.6
5 7.9

A 1 is exactly as likely as 5-9 combined (nice exercise).

Formula gives the percentage of the slide rule that is
occupied by d through d+ 1.

Nice Radiolab episode on Benford’s:
http://www.radiolab.org/2009/nov/30/
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Logs, number sense, and senses

That Radiolab episode also asks the following question:

What number is halfway between 1 and 9?

3 because 1× 3 = 3 and 3× 3 = 9.

Research by Stanislas Dehaene on babies and on Amazon
tribesman with no formal education appears to show that
our natural number sense is logarithmic.

Our perception of sound loudness, brightness, and touch
sensitivity is also logarithmic.

Weber-Fechner law: the amount of perception is

proportional to ln
(

S
S0

)
, where S is the amount of stimulus

and S0 is the smallest stimulus that is perceivable.
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The birthday problem

How many people need to be in a room for there to be a
50/50 chance that two people share a birthday?

23

How many people need to be in a room for there to be a
90% chance that two people share a birthday? 41

With k people in a room, the probability of no shared
birthdays is

364

365
· 363

365
· 362

365
· · · · · 362− (k − 1)

365

=

(
1− 1

365

)(
1− 2

365

)(
1− 3

365

)
. . .

(
1− k − 1

365

)
≈e−1/365e−2/365 . . . e−(k−1)/365

=e−k(k−1)/(2·365)

≈e−k2/(2·365)
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The birthday problem

Invert this to get the number of people needed for there to
be a probability p of a repeat:√

2 · 365 ln

(
1

1− p

)

The birthday problem is a special case of a general class of
problems.

Example: If you have a library of 5000 songs from which
you randomly select songs, how many songs would you
have to listen to before you have a 25% chance of hearing
the same song twice? 53

Another Example: Hash function collisions
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Other places logs show up

Number of digits in an integer n: dlog10(n)e

Prime number theorem: The number of primes less than n
is roughly n

lnn

Mercator map projection: D = a ln(tan(φ/2 + 45◦)) gives
the relationship between map distance D and latitude φ

Hick;s Law: The amount of time it takes to choose from n
choices is proportional to log2(n+ 1)

Fitt’s law: The time to point to something (with a finger or
a mouse, for instance) is given by a+ b log2

(
1 + D

W

)
, where

a and b are constants, D is the distance to the target and
W is the size of the target.

Discrete logarithm: bx = c in a group. For example, if p is
prime, solve 3x ≡ 50 (mod 71). Useful in cryptography.

Hand calculations before calculators
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Mercator map projection: D = a ln(tan(φ/2 + 45◦)) gives
the relationship between map distance D and latitude φ

Hick;s Law: The amount of time it takes to choose from n
choices is proportional to log2(n+ 1)

Fitt’s law: The time to point to something (with a finger or
a mouse, for instance) is given by a+ b log2

(
1 + D

W
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Computer science

Computer science has many algorithms that involve cutting
the search space in half at each step

Binary search

Say we start with 1000 items and cut search space in half
until we get down to 1 item

The number of steps needed is found by solving 2x = 1000,
giving x = log2(1000)

Binary trees

Number of levels is roughly log2 n, where n is the number
of elements
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Logs and products of small numbers

Logs are useful if you need to multiply a lot of really small
numbers together.

For instance, multiplying 500 numbers between .01 and .1
would result in 0 on a computer (underflow).

Say we need to compare
∏500

i=1 pi with
∏500

i=1 qi, where
pi, qi < .1.

We can just compare the logs of the products, using the
fact that

log

(
500∏
i=1

pi

)
=

500∑
i=1

log(pi).

Underflow is not a problem for this sum.
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Basic probability example

Professor Weiss is a three-time Jeopardy! champion. Let’s say
the probability that he beats you in a game of Jeopardy! is
0.9999.

1 If you play 200 games, what is the probability that he
beats you in all 200 games?

.9999200

2 How many games do you have to play for there to be a
90% chance that you win at least one game?

1− .9999x = .9→ x = ln(.9)
ln(.9999) ≈ 1054
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Iterated function systems

Figure on the left is colored according to whether a point is hit
or not.

Figure on the right is colored according to the log of the
number of times the point was hit.

Some points are hit rarely, while others are hit thousands of
times. Take the log of the number times a point was hit and use
that for shading.



Iterated function systems



Logs and integrals

Why is

∫ x

1

1

t
dt = lnx?

Because it’s defined that way?

Here’s a modernization of the approach first taken by Mercator
and St. Vincent in the 1600s.
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Logs and integrals

∫ x
1

1
t dt is the area under y = 1/t from t = 1 to t = x.

A multiplicative change in x corresponds to an additive change
in the area.
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What base?

This leads to ∫ x

1

1

t
dt = log x.

But what is the base?

We know the base is e.

But why not something else, like base 7 or base 443.18?
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Why base e

Say we want

∫ 32

1

1

x
dx.

Suppose instead of powers of 2, we use something smaller, like
powers of r ∈ (1, 2).
The smaller rectangles will fit the area more closely.

How many rectangles will there be?
Answer: Find the largest power of r less than 32.
In other words, solve rx = 32. We get x = log(32)

log r .
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Why base e, cont.

The area is then log(32)
log r (r − 1).

Suppose r = 1 + 1
n for some small value of n.

The area is then

log(32)

log(1 + 1
n)

(1 +
1

n
− 1)

=
log(32)

n log(1 + 1
n)

=
log(32)

log(1 + 1
n)n

= log(1+ 1
n
)n(32)

As n→∞, this becomes loge(32).
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