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Berliner, Bostelmann, Brualdi, Deatt (BBBD) proved the following useful lemma.

Lemma 1 (BBBD Lemma 1). Let (G, f) be given, such that G is f -choosable. Suppose
size(f) = χSC(G) + r for some r ≥ 0. For any vertex v ∈ V (G), and any set A of r + 1
colors, there exists an f -assignment C such that every proper C-coloring of G uses a color
from A on v.

Here is a slight strengthening of it.

Lemma 2. Let (G, f) be given, with v0 ∈ V (G), and let r ≥ 0. Define a size function g by
g(v) = f(v) for v 6= v0 and g(v0) = f(v0)− r − 1. If G is not g-choosable, then for any set
A of r + 1 colors, there exists an f -assignment C such that every proper C-coloring uses a
color from A on v0.

Proof. Let D be an uncolorable g-assignment, with colors named so that A ∩ D(v0) = ∅.
Define the f -assignment C by C(v0) = D(v0) ∪A and C(v) = D(v) for v 6= v0.

The first lemma follows from this, since if size(f) = χSC(G) + r, then g defined from
f as in the second lemma has size less than χSC(G), and so G is not g-choosable. They
proved the following nice theorem. Here’s a modified version of their proof.

Lemma 3 (BBBD Theorem 1). Let G and G′ be graphs such that V (G) ∩ V (G′) = {v0}.
Then

χSC(G ∪G′) = χSC(G) + χSC(G′)− 1.

Proof. To show χSC(G ∪ G′) ≤ χSC(G) + χSC(G′) − 1, let g and g′ be minimum choice
functions on G and G′, respectively. Define a function h on G of size χSC(G) +χSC(G′)− 1
by h(v0) = g(v0) + g′(v0) − 1, and let h(v) = g(v) for v ∈ V (G − v0) and h(v) = g′(v)
for v ∈ V (G′ − v0). Let C be an h-assignment. Because G is f choosable, and h agrees
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with f on G, except at v0 where h(v0) ≥ f(v0), there exists a proper coloring of G from
CG. Let A denote the set of all colors that can be used in a proper CG-coloring of G.
If |A| ≥ g′(v), then there exists a proper CG′-coloring of G′ with the color on v0 coming
from A, and hence this coloring can be combined with a proper CG-coloring of G to give a
proper C-coloring of G ∪G′. So we must show that we cannot have |A| < g′(v). By way of
contradiction, consider the list assignment D on G given by D(v) = C(v) for v 6= v0, and
D(v0) = C(v0) \ A. Since D agrees on G − v0 with C (which has a proper coloring), and
|D(v0)| = g(v0) + g′(v0)− 1− |A| ≥ g(v0), there must be a proper coloring coloring from D,
which contradicts the definition of A.

Next, suppose there exists a choice function f of size χSC(G) + χSC(G′)− 2. Since G is
f -choosable, size(fG) = χSC(G) +m for some m ≥ 0. By BBBD’s Lemma, there exists an
fG-assignment C such that the set A of colors that can be used in a proper CG-coloring of
G has size at most m + 1. Define a size function h on G′ by h(v) = f(v) for v 6= v0, and
h(v0) = m+ 1. Then

size(h) = m+ 1 + size(fG′−v)

= m+ 1 + size(f)− size(fG)

= m+ 1 + (χSC(G) + χSC(G′)− 2)− (χSC(G) +m)

= χSC(G′)− 1.

Therefore, there must exist a h-assignment D on G′ that has no proper coloring, and
we may name the colors so that D(v0) = A. Then the f -assignment given by C on G
and D on G′ − {v0} has no proper coloring, contradicting that G is f -choosable. Hence,
χSC(G ∪G′) ≥ χSC(G) + χSC(G′)− 1.

The basic idea of the above proof is that the f defined in the first paragraph has
f(v0) = g(v0) + g′(v0)− 1, and that even the best choice of lists on G can only knock out at
most g(v0)−1 “slots” on v0, leaving g′(v0) slots to color G′ with, which is enough. However,
if you drop f(v0) down by any more, then this breaks down, and a clever choice of lists
on G, whose existence is guaranteed by the previous lemma, can knock out g(v0)− 1 slots,
leaving less than g′(v0) slots on v0, and so the remaining list sizes on G′ sum up to less than
the sum choice number of G′.

BBBD’s Theorem 3 can be rewritten using the τ , ρ terminology in the form of the
following theorem.

Theorem 4 (BBBD Theorem 3). For any graph G, χSC(G) ≤ ρ(G) with equality if and
only if there exists a simple minimum choice function.

Proof. The inequality χSC(G) ≤ ρ(G) follows immediately from Lemma 2.2 of the thesis.
Next, if f is a minimum choice function with f(v) = 1 (resp. deg(v) + 1), then G − v
is fv-choosable (resp. fG−v-choosable). Thus, χSC(G − v) ≤ χSC(G) − deg(v) − 1 =
size(fv) = size(fG−v). Rearranging this yields χSC(G) ≥ ρ(G). For the converse, since
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χSC(G) = ρ(G), there exists a vertex v such that χSC(G) = χSC(G − v) + deg(v) + 1. Let
f be a minimum choice function on G − v. Define a size function g on G by g(w) = f(w)
for w 6= v, and g(v) = deg(v) + 1. Then as g(v) = deg(v) + 1, it is simple, and as
size g = χSC(G− v) + deg v + 1 = χSC(G), G is g-choosable.

Alternatively, at the last step in the proof, we could have reached the desired conclusion
by instead defining g(w) = f(w) + 1, if v is adjacent to w, g(v) = 1, and g(w) = f(w) for
any other vertex w. Notice that gv = f .

Edge counterexample — BBBD asked if it were true that, given a minimum choice
function f , there exists an f -assignment forcing an edge. The answer is no, as the fan graph
F5 with the size function assigning list size 4 to the fan vertex v0, and (2, 2, 2, 3, 2) to the
path, is choosable, but the edge v0v1 can’t be forced.

Of more interest than the sum choice number, perhaps, is γSC(G) = GB(G)− χSC(G),
the gap between the greedy bound and sum choice number.

Lemma 5. If G is connected, then for any v ∈ V (G), χSC(G) ≥ χSC(G− v) + 2.

Proof. If G were f -choosable for an f of size χSC(G− v) + 1, then f(v) = 1, as otherwise,
size(fG−v) < χSC(G − v). Since G is connected, v has a neighbor in G, so size(fv) <
χSC(G − v), and therefore G − v is not fv-choosable. This is not possible, as Lemma 2.1
(of the thesis) says that G is f -choosable if and only if G− v is fv-choosable.

Lemma 6. If G = (V,E) is connected, then γSC(G) ≤ minv∈V γSC(G− v) + deg(v)− 1. In
particular, if G− v is sc-greedy for all v, then γSC(G) ≤ δ(G)− 1.

Proof. Let v ∈ V (G). Since G is connected, χSC(G) ≥ χSC(G− v) + 2. Hence |V |+ |E| −
χSC(G) ≤ |V | + |E| − χSC(G − v) − 2. The result follows immediately from the relations
|V (G− v)| = |V | − 1 and |E(G− v)| = |E| − deg(v).

For a vertex v of minimum degree, the preceding lemma implies that γSC(G)− γSC(G−
v) ≤ δ(G)− 1.

Lemma 7. If H is an induced subgraph of G, then γSC(G) ≥ γSC(H).

Proof. There exists a choice function f on H of size χSC(H). Next, choose any ordering of
the vertices of G such that no vertex of G−H comes before a vertex of H in the ordering,
and let g be a size function on G defined by greedy coloring on this ordering, g(vi) =
1 + |{vj : i < j, and vivj ∈ E(G)}|. Let h be the size function on G defined by hH = f and
hG−H = g. It is easy to see that G is h-choosable, and sizeh = χSC(H) + GB (G−H). We
may thus conclude that χSC(G) ≤ χSC(H) + GB (G−H) and γSC(G) ≥ γSC(H).
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Here are my versions of the statements of Lemmas 7 and 8 of Isaac’s Sum List Coloring
Block Graphs paper. The proofs there are straightforward. Note that in (b), ti ≥ i for all
i is equivalent to saying that H is fH -choosable.

Lemma 8. Let (G, f) be given, and let H be an induced subgraph of G such that any two
vertices of H have same neighborhood N outside of H.

(a) Let g be a size function on H, given by g(v) = f(v)− |N |. If H is g-choosable, then
G is f -choosable if and only if G−H is fG−H-choosable.

(b) Suppose H is a k-clique. Let t1, . . . tk be the list sizes of the vertices of H ordered such
that t1 ≤ t2 ≤ · · · ≤ tk ≤ k. If ti ≥ i for all i, then G is f -choosable if and only if
G−B is fHG−H-choosable.

Fact 1. 2×n array — The sum choice number of the 2×n array, K2 �Kn, as calculated
by Isaac, is n2+d5n/3e. Since the greedy bound is n2+2n, this means that γSC (K2 �Kn) =
bn/3c. This means that the wrap-around ladder, P2 � C3, is not sc-greedy.

Here is Isaac’s Lemma 1 from the 2× n array paper. This may be useful.

Lemma 9. Let f be a choice function on Kn with size χSC(Kn) + t. The f -assignment
consisting of initial lists forces at least n− 2t vertices.

The proof is not hard, just put the vertices in order of increasing list size, and whenever
f(vi−1) = i− 1 and f(vi) = i a color is forced on vi. There are at most 2t indices at which
f(i) 6= i, so at most 2t vertices can’t be forced. Is it possible to force any more than this?
Of course, use list sizes 1,2,3,6, so that t = 2, n− 2t = 0, but 3 vertices are forced.

Question 1. Is there some nice way of showing that G is f choosable, where size f <
χSC (G)? In my P3 � Pn proof, and Isaac’s K2 �Kn most of the work was in showing that
a certain small graph (P3 � P3 for mine, and K2 �K3) was choosable.

Theorem 4 in BBBD is the following.

Theorem 10. The graph obtained from Kn by attaching a vertex to each of k different
vertices of Kn is sc-greedy.

I think it actually follows relatively easily from the previous lemma, though I don’t yet
have the proof worked out. From this they prove the following statement.

Theorem 11. Let T be a tree on n ≥ 3 vertices. There exists a sequence of connected graphs
Gi, each sc-greedy, where G1 = Kn, Gn = T and Gi+1 is obtained from Gi by deleting an
edge.

The proof is an easy induction.
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Observation 1. BBBD also introduce the notion of sc-critical — a graph G is sc-critical
provided that χSC(G − e) < χSC(G) for every edge e of G. Paths, cycles, and complete
graphs are sc-critical, but in general, removing an edge from an sc-greedy graph might not
produce another sc-greedy graph, so not all sc-greedy graphs are sc-critical. Examples of
graphs which are not sc-critical are lots of the complete bipartite graphs, though not all.

Fact 2. Here is a table of all the graphs I know of that have γSC > 0.

G γSC (G)

θ1,1,2k+1 1
K1 ∨ Pn b(n+ 1)/11c
K2 �Kn bn/3c
P3 � Pn bn/3c
K2,n n− b

√
4n+ 1c+ 1

K3,n 2n− b
√

12n+ 4c+ 2

Question 2. Theta graphs of the form θ1,1,2n+1 are interesting in that they are the only
example of have of a sequence of graphs, which are inductively defined, that is θ1,1,2n+1 is
obtained from θ1,1,2n−1 by attaching vertices (and it’s the same type of attaching regardless
of k), that have γSC = C > 0, where C is a constant (independent of n). All of the other
inductively defined sequences of graphs fall under two categories: Pn, Cn, Kn, . . . all have
γSC = 0, or Km,n, K2 �Kn, P3 � Pn, K1 ∨ Pn all have γSC a function of n. What other
inductive classes of graphs have γSC independent of m?

Question 3. Is the following true in general, or, at least, in certain useful special cases? If
v and w are adjacent and f(v) ≤ f(w), then it is only necessary to consider the case where
C(v) ⊂ C(w)? More precisely, is the following statement true (or true in some sense)? If
f(v) ≤ f(w) and G is not f -choosable, then there exists an f -assignment C that has no
proper coloring and satisfies C(v) ⊂ C(w).

Question 4. Does Kp,q maximize γSC?

Question 5. I think this is true: If γSC(G) > γSC(G−v) for all v in V (G), then there does
not exist a simple minimum choice function. An analogous result, maybe with some sort of
condition with how things fit together, should hold for 1-configurations. Is this an iff? Also,
the similar earlier result about if γSC = ρ is that just obvious? Does it need a proof?
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