A few sum list coloring facts

Brian Heinold

Department of Mathematics and Computer Science Mount Saint Mary's University, Emmitsburg, MD 21727 heinold@msmary.edu

March 12, 2011

Berliner, Bostelmann, Brualdi, Deatt (BBBD) proved the following useful lemma.

Lemma 1 (BBBD Lemma 1). Let (G, f) be given, such that G is f-choosable. Suppose size $(f) = \chi_{SC}(G) + r$ for some $r \ge 0$. For any vertex $v \in V(G)$, and any set A of r + 1colors, there exists an f-assignment C such that every proper C-coloring of G uses a color from A on v.

Here is a slight strengthening of it.

Lemma 2. Let (G, f) be given, with $v_0 \in V(G)$, and let $r \ge 0$. Define a size function g by g(v) = f(v) for $v \ne v_0$ and $g(v_0) = f(v_0) - r - 1$. If G is not g-choosable, then for any set A of r + 1 colors, there exists an f-assignment C such that every proper C-coloring uses a color from A on v_0 .

Proof. Let \mathcal{D} be an uncolorable g-assignment, with colors named so that $A \cap \mathcal{D}(v_0) = \emptyset$. Define the f-assignment \mathcal{C} by $\mathcal{C}(v_0) = \mathcal{D}(v_0) \cup A$ and $\mathcal{C}(v) = \mathcal{D}(v)$ for $v \neq v_0$.

The first lemma follows from this, since if $\operatorname{size}(f) = \chi_{\operatorname{SC}}(G) + r$, then g defined from f as in the second lemma has size less than $\chi_{\operatorname{SC}}(G)$, and so G is not g-choosable. They proved the following nice theorem. Here's a modified version of their proof.

Lemma 3 (BBBD Theorem 1). Let G and G' be graphs such that $V(G) \cap V(G') = \{v_0\}$. Then

 $\chi_{\mathrm{SC}}(G \cup G') = \chi_{\mathrm{SC}}(G) + \chi_{\mathrm{SC}}(G') - 1.$

Proof. To show $\chi_{SC}(G \cup G') \leq \chi_{SC}(G) + \chi_{SC}(G') - 1$, let g and g' be minimum choice functions on G and G', respectively. Define a function h on G of size $\chi_{SC}(G) + \chi_{SC}(G') - 1$ by $h(v_0) = g(v_0) + g'(v_0) - 1$, and let h(v) = g(v) for $v \in V(G - v_0)$ and h(v) = g'(v)for $v \in V(G' - v_0)$. Let \mathcal{C} be an h-assignment. Because G is f choosable, and h agrees with f on G, except at v_0 where $h(v_0) \ge f(v_0)$, there exists a proper coloring of G from \mathcal{C}_G . Let A denote the set of all colors that can be used in a proper \mathcal{C}_G -coloring of G. If $|A| \ge g'(v)$, then there exists a proper $\mathcal{C}_{G'}$ -coloring of G' with the color on v_0 coming from A, and hence this coloring can be combined with a proper \mathcal{C}_G -coloring of G to give a proper \mathcal{C} -coloring of $G \cup G'$. So we must show that we cannot have |A| < g'(v). By way of contradiction, consider the list assignment \mathcal{D} on G given by $\mathcal{D}(v) = \mathcal{C}(v)$ for $v \neq v_0$, and $\mathcal{D}(v_0) = \mathcal{C}(v_0) \setminus A$. Since \mathcal{D} agrees on $G - v_0$ with \mathcal{C} (which has a proper coloring), and $|\mathcal{D}(v_0)| = g(v_0) + g'(v_0) - 1 - |A| \ge g(v_0)$, there must be a proper coloring coloring from \mathcal{D} , which contradicts the definition of A.

Next, suppose there exists a choice function f of size $\chi_{SC}(G) + \chi_{SC}(G') - 2$. Since G is f-choosable, size $(f_G) = \chi_{SC}(G) + m$ for some $m \ge 0$. By BBBD's Lemma, there exists an f_G -assignment \mathcal{C} such that the set A of colors that can be used in a proper \mathcal{C}_G -coloring of G has size at most m + 1. Define a size function h on G' by h(v) = f(v) for $v \ne v_0$, and $h(v_0) = m + 1$. Then

size(h) = m + 1 + size(f_{G'-v})
= m + 1 + size(f) - size(f_G)
= m + 1 + (
$$\chi_{SC}(G) + \chi_{SC}(G') - 2$$
) - ($\chi_{SC}(G) + m$)
= $\chi_{SC}(G') - 1$.

Therefore, there must exist a *h*-assignment \mathcal{D} on G' that has no proper coloring, and we may name the colors so that $\mathcal{D}(v_0) = A$. Then the *f*-assignment given by \mathcal{C} on Gand \mathcal{D} on $G' - \{v_0\}$ has no proper coloring, contradicting that G is *f*-choosable. Hence, $\chi_{\mathrm{SC}}(G \cup G') \geq \chi_{\mathrm{SC}}(G) + \chi_{\mathrm{SC}}(G') - 1$.

The basic idea of the above proof is that the f defined in the first paragraph has $f(v_0) = g(v_0) + g'(v_0) - 1$, and that even the best choice of lists on G can only knock out at most $g(v_0) - 1$ "slots" on v_0 , leaving $g'(v_0)$ slots to color G' with, which is enough. However, if you drop $f(v_0)$ down by any more, then this breaks down, and a clever choice of lists on G, whose existence is guaranteed by the previous lemma, can knock out $g(v_0) - 1$ slots, leaving less than $g'(v_0)$ slots on v_0 , and so the remaining list sizes on G' sum up to less than the sum choice number of G'.

BBBD's Theorem 3 can be rewritten using the τ , ρ terminology in the form of the following theorem.

Theorem 4 (BBBD Theorem 3). For any graph G, $\chi_{SC}(G) \leq \rho(G)$ with equality if and only if there exists a simple minimum choice function.

Proof. The inequality $\chi_{SC}(G) \leq \rho(G)$ follows immediately from Lemma 2.2 of the thesis. Next, if f is a minimum choice function with f(v) = 1 (resp. deg(v) + 1), then G - vis f^v -choosable (resp. f_{G-v} -choosable). Thus, $\chi_{SC}(G-v) \leq \chi_{SC}(G) - \deg(v) - 1 =$ size $(f^v) = \text{size}(f_{G-v})$. Rearranging this yields $\chi_{SC}(G) \geq \rho(G)$. For the converse, since $\chi_{\mathrm{SC}}(G) = \rho(G)$, there exists a vertex v such that $\chi_{\mathrm{SC}}(G) = \chi_{\mathrm{SC}}(G-v) + \deg(v) + 1$. Let f be a minimum choice function on G-v. Define a size function g on G by g(w) = f(w) for $w \neq v$, and $g(v) = \deg(v) + 1$. Then as $g(v) = \deg(v) + 1$, it is simple, and as size $g = \chi_{\mathrm{SC}}(G-v) + \deg v + 1 = \chi_{\mathrm{SC}}(G)$, G is g-choosable.

Alternatively, at the last step in the proof, we could have reached the desired conclusion by instead defining g(w) = f(w) + 1, if v is adjacent to w, g(v) = 1, and g(w) = f(w) for any other vertex w. Notice that $g^v = f$.

Edge counterexample — BBBD asked if it were true that, given a minimum choice function f, there exists an f-assignment forcing an edge. The answer is no, as the fan graph F_5 with the size function assigning list size 4 to the fan vertex v_0 , and (2, 2, 2, 3, 2) to the path, is choosable, but the edge v_0v_1 can't be forced.

Of more interest than the sum choice number, perhaps, is $\gamma_{SC}(G) = GB(G) - \chi_{SC}(G)$, the gap between the greedy bound and sum choice number.

Lemma 5. If G is connected, then for any $v \in V(G)$, $\chi_{SC}(G) \ge \chi_{SC}(G-v) + 2$.

Proof. If G were f-choosable for an f of size $\chi_{SC}(G-v) + 1$, then f(v) = 1, as otherwise, size $(f_{G-v}) < \chi_{SC}(G-v)$. Since G is connected, v has a neighbor in G, so size $(f^v) < \chi_{SC}(G-v)$, and therefore G-v is not f^v -choosable. This is not possible, as Lemma 2.1 (of the thesis) says that G is f-choosable if and only if G-v is f^v -choosable. \Box

Lemma 6. If G = (V, E) is connected, then $\gamma_{SC}(G) \leq \min_{v \in V} \gamma_{SC}(G-v) + \deg(v) - 1$. In particular, if G - v is sc-greedy for all v, then $\gamma_{SC}(G) \leq \delta(G) - 1$.

Proof. Let $v \in V(G)$. Since G is connected, $\chi_{SC}(G) \ge \chi_{SC}(G-v) + 2$. Hence $|V| + |E| - \chi_{SC}(G) \le |V| + |E| - \chi_{SC}(G-v) - 2$. The result follows immediately from the relations |V(G-v)| = |V| - 1 and $|E(G-v)| = |E| - \deg(v)$.

For a vertex v of minimum degree, the preceding lemma implies that $\gamma_{SC}(G) - \gamma_{SC}(G - v) \le \delta(G) - 1$.

Lemma 7. If H is an induced subgraph of G, then $\gamma_{SC}(G) \ge \gamma_{SC}(H)$.

Proof. There exists a choice function f on H of size $\chi_{SC}(H)$. Next, choose any ordering of the vertices of G such that no vertex of G - H comes before a vertex of H in the ordering, and let g be a size function on G defined by greedy coloring on this ordering, $g(v_i) = 1 + |\{v_j : i < j, \text{ and } v_i v_j \in E(G)\}|$. Let h be the size function on G defined by $h_H = f$ and $h_{G-H} = g$. It is easy to see that G is h-choosable, and size $h = \chi_{SC}(H) + \text{GB}(G - H)$. We may thus conclude that $\chi_{SC}(G) \leq \chi_{SC}(H) + \text{GB}(G - H)$ and $\gamma_{SC}(G) \geq \gamma_{SC}(H)$.

Here are my versions of the statements of Lemmas 7 and 8 of Isaac's Sum List Coloring Block Graphs paper. The proofs there are straightforward. Note that in (b), $t_i \ge i$ for all i is equivalent to saying that H is f_H -choosable.

Lemma 8. Let (G, f) be given, and let H be an induced subgraph of G such that any two vertices of H have same neighborhood N outside of H.

- (a) Let g be a size function on H, given by g(v) = f(v) |N|. If H is g-choosable, then G is f-choosable if and only if G H is f_{G-H} -choosable.
- (b) Suppose H is a k-clique. Let $t_1, \ldots t_k$ be the list sizes of the vertices of H ordered such that $t_1 \leq t_2 \leq \cdots \leq t_k \leq k$. If $t_i \geq i$ for all i, then G is f-choosable if and only if G-B is f_{G-H}^H -choosable.

Fact 1. $2 \times n$ array — The sum choice number of the $2 \times n$ array, $K_2 \square K_n$, as calculated by Isaac, is $n^2 + \lceil 5n/3 \rceil$. Since the greedy bound is $n^2 + 2n$, this means that $\gamma_{SC} (K_2 \square K_n) = \lfloor n/3 \rfloor$. This means that the wrap-around ladder, $P_2 \square C_3$, is not sc-greedy.

Here is Isaac's Lemma 1 from the $2 \times n$ array paper. This may be useful.

Lemma 9. Let f be a choice function on K_n with size $\chi_{SC}(K_n) + t$. The f-assignment consisting of initial lists forces at least n - 2t vertices.

The proof is not hard, just put the vertices in order of increasing list size, and whenever $f(v_{i-1}) = i - 1$ and $f(v_i) = i$ a color is forced on v_i . There are at most 2t indices at which $f(i) \neq i$, so at most 2t vertices can't be forced. Is it possible to force any more than this? Of course, use list sizes 1,2,3,6, so that t = 2, n - 2t = 0, but 3 vertices are forced.

Question 1. Is there some nice way of showing that G is f choosable, where size $f < \chi_{SC}(G)$? In my $P_3 \square P_n$ proof, and Isaac's $K_2 \square K_n$ most of the work was in showing that a certain small graph ($P_3 \square P_3$ for mine, and $K_2 \square K_3$) was choosable.

Theorem 4 in BBBD is the following.

Theorem 10. The graph obtained from K_n by attaching a vertex to each of k different vertices of K_n is sc-greedy.

I think it actually follows relatively easily from the previous lemma, though I don't yet have the proof worked out. From this they prove the following statement.

Theorem 11. Let T be a tree on $n \ge 3$ vertices. There exists a sequence of connected graphs G_i , each sc-greedy, where $G_1 = K_n$, $G_n = T$ and G_{i+1} is obtained from G_i by deleting an edge.

The proof is an easy induction.

Observation 1. BBBD also introduce the notion of sc-critical — a graph G is sc-critical provided that $\chi_{SC}(G - e) < \chi_{SC}(G)$ for every edge e of G. Paths, cycles, and complete graphs are sc-critical, but in general, removing an edge from an sc-greedy graph might not produce another sc-greedy graph, so not all sc-greedy graphs are sc-critical. Examples of graphs which are not sc-critical are lots of the complete bipartite graphs, though not all.

Fact 2. Here is a table of all the graphs I know of that have $\gamma_{SC} > 0$.

G	$\gamma_{ m SC}\left(G ight)$
$\theta_{1,1,2k+1}$	1
$K_1 \vee P_n$	$\lfloor (n+1)/11 \rfloor$
$K_2 \square K_n$	$\lfloor n/3 \rfloor$
$P_3 \square P_n$	$\lfloor n/3 \rfloor$
$K_{2,n}$	$n - \lfloor \sqrt{4n+1} \rfloor + 1$
$K_{3,n}$	$2n - \lfloor \sqrt{12n+4} \rfloor + 2$

Question 2. Theta graphs of the form $\theta_{1,1,2n+1}$ are interesting in that they are the only example of have of a sequence of graphs, which are inductively defined, that is $\theta_{1,1,2n+1}$ is obtained from $\theta_{1,1,2n-1}$ by attaching vertices (and it's the same type of attaching regardless of k), that have $\gamma_{SC} = C > 0$, where C is a constant (independent of n). All of the other inductively defined sequences of graphs fall under two categories: P_n , C_n , K_n , ... all have $\gamma_{SC} = 0$, or $K_{m,n}$, $K_2 \square K_n$, $P_3 \square P_n$, $K_1 \lor P_n$ all have γ_{SC} a function of n. What other inductive classes of graphs have γ_{SC} independent of m?

Question 3. Is the following true in general, or, at least, in certain useful special cases? If v and w are adjacent and $f(v) \leq f(w)$, then it is only necessary to consider the case where $C(v) \subset C(w)$? More precisely, is the following statement true (or true in some sense)? If $f(v) \leq f(w)$ and G is not f-choosable, then there exists an f-assignment C that has no proper coloring and satisfies $C(v) \subset C(w)$.

Question 4. Does $K_{p,q}$ maximize γ_{SC} ?

Question 5. I think this is true: If $\gamma_{SC}(G) > \gamma_{SC}(G-v)$ for all v in V(G), then there does not exist a simple minimum choice function. An analogous result, maybe with some sort of condition with how things fit together, should hold for 1-configurations. Is this an iff? Also, the similar earlier result about if $\gamma_{SC} = \rho$ is that just obvious? Does it need a proof?