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Berliner, Bostelmann, Brualdi, Deatt (BBBD) proved the following useful lemma.

Lemma 1 (BBBD Lemma 1). Let (G, f) be given, such that G is f-choosable. Suppose
size(f) = xsc(G) +r for some r > 0. For any vertex v € V(G), and any set A of r + 1
colors, there exists an f-assignment C such that every proper C-coloring of G uses a color
from A on v.

Here is a slight strengthening of it.

Lemma 2. Let (G, f) be given, with vy € V(G), and let r > 0. Define a size function g by
g(v) = f(v) forv# vy and g(vo) = f(vg) —r — 1. If G is not g-choosable, then for any set
A of r + 1 colors, there exists an f-assignment C such that every proper C-coloring uses a
color from A on vg.

Proof. Let D be an uncolorable g-assignment, with colors named so that A N D(vg) = 0.
Define the f-assignment C by C(vg) = D(vg) U A and C(v) = D(v) for v # vg. O

The first lemma follows from this, since if size(f) = xsc(G) + r, then g defined from
f as in the second lemma has size less than xsc(G), and so G is not g-choosable. They
proved the following nice theorem. Here’s a modified version of their proof.

Lemma 3 (BBBD Theorem 1). Let G and G’ be graphs such that V(G) NV (G') = {vo}.
Then

xsc(GUG') = xsc(G) + xsc(G') — 1.

Proof. To show xsc(G UG') < xsc(G) + xsc(G') — 1, let g and ¢’ be minimum choice
functions on G and G’, respectively. Define a function h on G of size xsc(G) + xsc(G') — 1
by h(vg) = g(vg) + ¢'(vg) — 1, and let h(v) = g(v) for v € V(G — vp) and h(v) = ¢'(v)
for v € V(G — vp). Let C be an h-assignment. Because G is f choosable, and h agrees



with f on G, except at vy where h(vg) > f(vo), there exists a proper coloring of G from
Cg. Let A denote the set of all colors that can be used in a proper Cg-coloring of G.
If |A] > ¢'(v), then there exists a proper Cg/-coloring of G’ with the color on vy coming
from A, and hence this coloring can be combined with a proper Cg-coloring of G to give a
proper C-coloring of G U G’. So we must show that we cannot have |A4| < ¢'(v). By way of
contradiction, consider the list assignment D on G given by D(v) = C(v) for v # vy, and
D(vg) = C(vg) \ A. Since D agrees on G — vy with C (which has a proper coloring), and
|D(vo)| = g(vo) + ¢'(vo) — 1 —|A| > g(vg), there must be a proper coloring coloring from D,
which contradicts the definition of A.

Next, suppose there exists a choice function f of size xsc(G) + xsc(G’) — 2. Since G is
f-choosable, size(fa) = xsc(G) + m for some m > 0. By BBBD’s Lemma, there exists an
fa-assignment C such that the set A of colors that can be used in a proper Cg-coloring of
G has size at most m + 1. Define a size function h on G’ by h(v) = f(v) for v # vy, and
h(vg) =m+ 1. Then

size(h) = m + 1 + size(fgr—y)
=m+ 1+ size(f) — size(fq)
=m+ 1+ (xsc(G) + xsc(G') = 2) = (xsc(G) +m)
= xsc(G') - L.

Therefore, there must exist a h-assignment D on G’ that has no proper coloring, and
we may name the colors so that D(vg) = A. Then the f-assignment given by C on G
and D on G’ — {vp} has no proper coloring, contradicting that G is f-choosable. Hence,
xsc(GUG') > xsc(G) + xsc(G') — 1. O

The basic idea of the above proof is that the f defined in the first paragraph has
f(vo) = g(vo) + ¢'(vo) — 1, and that even the best choice of lists on G can only knock out at
most g(vg) —1 “slots” on vy, leaving ¢’(vg) slots to color G’ with, which is enough. However,
if you drop f(vg) down by any more, then this breaks down, and a clever choice of lists
on G, whose existence is guaranteed by the previous lemma, can knock out g(vg) — 1 slots,
leaving less than ¢'(vg) slots on vy, and so the remaining list sizes on G’ sum up to less than
the sum choice number of G'.

BBBD’s Theorem 3 can be rewritten using the 7, p terminology in the form of the
following theorem.

Theorem 4 (BBBD Theorem 3). For any graph G, xsc(G) < p(G) with equality if and
only if there exists a simple minimum choice function.

Proof. The inequality xsc(G) < p(G) follows immediately from Lemma 2.2 of the thesis.
Next, if f is a minimum choice function with f(v) = 1 (resp. deg(v) + 1), then G — v
is fY-choosable (resp. fg—,-choosable). Thus, xsc(G — v) < xsc(G) — deg(v) — 1 =
size(fV) = size(fg—v). Rearranging this yields xsc(G) > p(G). For the converse, since



xsc(G) = p(G), there exists a vertex v such that xsc(G) = xsc(G — v) + deg(v) + 1. Let
f be a minimum choice function on G — v. Define a size function g on G by g(w) = f(w)
for w # v, and g(v) = deg(v) + 1. Then as g(v) = deg(v) + 1, it is simple, and as
sizeg = xsc(G —v) +degv + 1 = xsc(G), G is g-choosable. O

Alternatively, at the last step in the proof, we could have reached the desired conclusion
by instead defining g(w) = f(w) + 1, if v is adjacent to w, g(v) = 1, and g(w) = f(w) for
any other vertex w. Notice that g¥ = f.

Edge counterexample — BBBD asked if it were true that, given a minimum choice
function f, there exists an f-assignment forcing an edge. The answer is no, as the fan graph
F5 with the size function assigning list size 4 to the fan vertex vy, and (2,2,2,3,2) to the
path, is choosable, but the edge vgv; can’t be forced.

Of more interest than the sum choice number, perhaps, is 75¢(G) = GB(G) — xsc(G),
the gap between the greedy bound and sum choice number.

Lemma 5. If G is connected, then for any v € V(G), xsc(G) > xsc(G —v) + 2.

Proof. If G were f-choosable for an f of size xsc(G —v) + 1, then f(v) = 1, as otherwise,
size(fg—v) < xsc(G — v). Since G is connected, v has a neighbor in G, so size(f") <
xsc(G — v), and therefore G — v is not f¥-choosable. This is not possible, as Lemma 2.1
(of the thesis) says that G is f-choosable if and only if G — v is f¥-choosable. O

Lemma 6. If G = (V, E) is connected, then vsc(G) < minyey ysc(G —v) +deg(v) — 1. In
particular, if G — v is sc-greedy for all v, then y3c(G) < §(G) — 1.

Proof. Let v € V(G). Since G is connected, xsc(G) > xsc(G —v) + 2. Hence |V| + |E| —
xsc(G) < V] + |E| — xsc(G —v) — 2. The result follows immediately from the relations
V(G —v)|=|V|]—-1and |[E(G —v)| = |E| — deg(v). O

For a vertex v of minimum degree, the preceding lemma implies that vsc(G) — ysc(G —

v) <4(G) —1.

Lemma 7. If H is an induced subgraph of G, then vsc(G) > vysc(H).

Proof. There exists a choice function f on H of size xsc(H). Next, choose any ordering of
the vertices of G such that no vertex of G — H comes before a vertex of H in the ordering,
and let g be a size function on G defined by greedy coloring on this ordering, g(v;) =
1+ {vj:i < j, and v;v; € E(G)}|. Let h be the size function on G defined by hy = f and
ha—g = g. It is easy to see that G is h-choosable, and size h = xsc(H) + GB (G — H). We
may thus conclude that xsc(G) < xsc(H) + GB (G — H) and vsc(G) > vsc(H). O



Here are my versions of the statements of Lemmas 7 and 8 of Isaac’s Sum List Coloring
Block Graphs paper. The proofs there are straightforward. Note that in (b), ¢; > ¢ for all
1 is equivalent to saying that H is fy-choosable.

Lemma 8. Let (G, f) be given, and let H be an induced subgraph of G such that any two
vertices of H have same neighborhood N outside of H.

(a) Let g be a size function on H, given by g(v) = f(v) — |N|. If H is g-choosable, then
G is f-choosable if and only if G — H is f_y-choosable.

(b) Suppose H is a k-clique. Let ty,. ..ty be the list sizes of the vertices of H ordered such
that t1 < to < --- <t < k. Ift; > i for all i, then G is f-choosable if and only if
G — B is fng—choosable.

Fact 1. 2 xn array — The sum choice number of the 2 xn array, Ko O K, as calculated
by Isaac, is n?+[5n/3]. Since the greedy bound is n®+2n, this means that vsc (Ko O K,) =
|n/3|. This means that the wrap-around ladder, Py O Cs, is not sc-greedy.

Here is Isaac’s Lemma 1 from the 2 x n array paper. This may be useful.

Lemma 9. Let f be a choice function on K, with size xsc(Ky) +t. The f-assignment
consisting of initial lists forces at least n — 2t vertices.

The proof is not hard, just put the vertices in order of increasing list size, and whenever
f(vi—1) =i —1and f(v;) =1 a color is forced on v;. There are at most 2¢ indices at which
f(i) # 1, so at most 2t vertices can’t be forced. Is it possible to force any more than this?
Of course, use list sizes 1,2,3,6, so that ¢t = 2, n — 2t = 0, but 3 vertices are forced.

Question 1. Is there some nice way of showing that G is f choosable, where size f <
xsc (G)? In my P3O P, proof, and Isaac’s Ko O K,, most of the work was in showing that
a certain small graph (Ps O P3 for mine, and Ko O K3) was choosable.

Theorem 4 in BBBD is the following.

Theorem 10. The graph obtained from K, by attaching a vertex to each of k different
vertices of K,, is sc-greedy.

I think it actually follows relatively easily from the previous lemma, though I don’t yet
have the proof worked out. From this they prove the following statement.

Theorem 11. Let T be a tree onn > 3 vertices. There exists a sequence of connected graphs
G, each sc-greedy, where Gy = K, G, =T and G;41 is obtained from G; by deleting an
edge.

The proof is an easy induction.



Observation 1. BBBD also introduce the notion of sc-critical — a graph G is sc-critical
provided that xsc(G — e) < xsc(G) for every edge e of G. Paths, cycles, and complete
graphs are sc-critical, but in general, removing an edge from an sc-greedy graph might not
produce another sc-greedy graph, so not all sc-greedy graphs are sc-critical. FExamples of
graphs which are not sc-critical are lots of the complete bipartite graphs, though not all.

Fact 2. Here is a table of all the graphs I know of that have ysc > 0.

G ysc (G)
Ok | 1
Kl\/Pn L(n—Fl)/llJ

KO K, Ln/3j

PsaP, | |n/3]

Ko n—[vIn+1]+1
Ks ), 2n — [V12n+ 4| + 2

Question 2. Theta graphs of the form 0112,41 are interesting in that they are the only
example of have of a sequence of graphs, which are inductively defined, that is 011 2n+1 s
obtained from 6112n—1 by attaching vertices (and it’s the same type of attaching regardless
of k), that have vsc = C > 0, where C is a constant (independent of n). All of the other
inductively defined sequences of graphs fall under two categories: Py, Cy, Ky, ...all have
vsc =0, or Ky, Ko OK,, P30 P, K1V P, all have ysc a function of n. What other
inductive classes of graphs have ~vsc independent of m?

Question 3. Is the following true in general, or, at least, in certain useful special cases? If
v and w are adjacent and f(v) < f(w), then it is only necessary to consider the case where
C(v) C C(w)? More precisely, is the following statement true (or true in some sense)? If
flw) < f(w) and G is not f-choosable, then there exists an f-assignment C that has no
proper coloring and satisfies C(v) C C(w).

Question 4. Does K, mazimize ysc ?

Question 5. [ think this is true: If vsc(G) > vsc(G —v) for all v in V(G), then there does
not exist a simple minimum choice function. An analogous result, maybe with some sort of
condition with how things fit together, should hold for 1-configurations. Is this an iff 7 Also,
the similar earlier result about if vysc = p s that just obvious? Does it need a proof?



