A Million Dollar Question Brian Heinold Mount St. Mary's University

Not so easy to find naïvely...

▲ロト ▲暦 ▶ ▲ 臣 ▶ ▲ 臣 ● ● ● ●

How to find Pythagorean triples

Pythagorean triples \Leftrightarrow rational points on unit circle

This is in the form of the equation of the unit circle: $x^2 + y^2 = 1.$

How to find Pythagorean triples, cont.

Start with a rational point on the circle and use that to generate all the others.

rational slopes \Leftrightarrow rational points

The line meets the circle in two points. We know one is (-1, 0).

Equation of line: y - 0 = r(x + 1)Equation of circle: $x^2 + y^2 = 1$

Plug in:
$$x^2 + [r(x+1)]^2 = 1$$

Algebra: $(r^2+1)x^2 + 2rx + (r^2-1) = 0$
Factor: $(x+1)((r^2+1)x + (r^2-1)) = 0$

How to find Pythagorean triples, cont.

$$x = \frac{1 - r^2}{1 + r^2}, \qquad y = \frac{2r}{1 + r^2}$$

Try r = 2/3: $x = \frac{5/9}{13/9}, y = \frac{4/3}{13/9}$ So x = 5/13, y = 12/13

Formula simplifies to:

$$a = n^2 - m^2$$

$$b = 2mn$$

$$c = n^2 + m^2$$

where m, n have no common factors

The same process works for finding rational points on ellipses, parabolas, and hyperbolas.

These are all degree 2 curves:

parabola: $y = ax^2 + bx + c$ ellipse/hyperbola: $a(x - x_0)^2 \pm b(y - y_0)^2 = 1$

What about higher degree curves?

image: http://www.gapsystem.org/

æ

▶ 《콜▶ 《콜▶ :

< 口 > < 🗗

Possibilities:

- Infinitely many rational points $(x^2 + y^2 = 1)$
- 2 No rational points $(x^2 + y^2 = 3)$
- **③** Finitely many rational points $(x^4 + y^4 = 2)$

Possibilities by degree:

- Degree 1 or 2: None or infinite many
- Degree 3: None, finite #, or infinitely many
- Degree ≥ 4 : None or finite # (deep theorem)

The most interesting case is degree 3.

Degree 3 curves can be algebraically transformed into the following form:

$$y^2 = x^3 + ax + b$$

If the curve has no cusps or self-intersections, it is called an **elliptic curve**.

Old approach fails

Pythagorean triple approach fails.

Line meets curve in three points.

When we substitute line equation in and factor, we could get something like $(x + 1)(x^2 - 3)$.

But it can be modified to work.

Suppose you start with two rational points.

When we substitute line equation in and factor, we get something like $(x - p_1)(x - p_2)(x - p_3)$ and since p_1 and p_2 are rational, then so is p_3 .

Chord and tangent procedure

We can repeatedly apply this idea to generate more rational points.

- You will always get all the rational points using this method.
- But you may need to start with more than one or two points in order to generate all of them.
- The number of points you need is called the *rank*.
- Note: a rank 0 curve has only finitely many rational points.
- By Mordell's Theorem (1923), the rank is finite.

- There is no known algorithm to determine the rank of any elliptic curve, or even determine if the rank is nonzero.
- To get some insight into the problem, instead look at the curves modulo a prime p
- Example: $y^2 = x^2 + 2x + 3 \pmod{11}$
- One solution is (5,4) because LHS is $4^2 \equiv 5 \pmod{11}$ and the RHS is $5^2 + 2 \cdot 5 + 3 = 38 \equiv 5 \pmod{11}$.
- A computer search can find all the solutions.

In the early 1960s Brian Birch and Peter Swinnerton-Dyer did computer searches for rational solutions.

They conjectured that the number of solutions, N_p , satisfies

$$\prod_{p \le x} \frac{N_p}{p} \approx C \, (\log x)^r$$

as $x \to \infty$, where r is the rank of the curve, and C is a constant.

Their conjecture is often phrased using higher mathematics:

Then we can define the incomplete L-series of C (incomplete because we omit the Euler factors for primes $p|2\Delta$) by

$$L(C,s) := \prod_{p \nmid 2\Delta} (1 - a_p p^{-s} + p^{1-2s})^{-1}.$$

We view this as a function of the complex variable s and this Euler product is then known to converge for $\operatorname{Re}(s) > 3/2$. A conjecture going back to Hasse (see the commentary on 1952(d) in [26]) predicted that L(C, s) should have a holomorphic continuation as a function of s to the whole complex plane. This has now been proved ([25], [24], [1]). We can now state the millenium prize problem:

Conjecture (Birch and Swinnerton-Dyer). The Taylor expansion of L(C, s) at s = 1 has the form

 $L(C, s) = c(s-1)^r + higher order terms$

with $c \neq 0$ and $r = \operatorname{rank}(C(\mathbb{Q}))$.

In particular this conjecture asserts that $L(C,1) = 0 \Leftrightarrow C(\mathbb{Q})$ is infinite.

Above: A part of Andrew Wiles's description from http://www.claymath.org

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - ののの

Even more formally

Let E be an elliptic curve over \mathbb{Q} , and let L(E,s) be the L-series attached to E .

Conjecture 1 (Birch and Swinnerton-Dyer)

- 1. L(E, s) has a zero at s = 1 of order equal to the rank of $E(\mathbb{Q})$
- Let R = rank(E(Q)). Then the residue of L(E, s) at s = 1, i.e. lim_{s-1}(s 1)^{-R}L(E, s) has a concrete expression involving the following invariants of E: the real period, the Tate-Shafarevich group, the elliptic regulator and the Neron model of E.

J. Tate said about this conjecture: "This remarkable conjecture relates the behavior of a function L at a point where it is not at present known to be defined to the order of a group (Sha) which is not known to be finite!" The precise statement of the conjecture asserts that

$$\lim_{s \to 1} \frac{L(E, s)}{(s-1)^R} = \frac{|\operatorname{Sha}| \cdot \Omega \cdot \operatorname{Reg}(E/\mathbb{Q}) \cdot \prod_p c_p}{|E_{\operatorname{tors}}(\mathbb{Q})|^2}$$

where

- R is the rank of E/Q.
- Ω is either the real period or twice the real period of a minimal model for E, depending on whether $E(\mathbb{R})$ is connected or not.
- | Sha | is the order of the Tate-Shafarevich group of E/\mathbb{Q} .
- $\operatorname{Reg}(E/\mathbb{Q})$ is the elliptic regulator of $E(\mathbb{Q})$
- |E_{tors}(Q)| is the number of torsion points on E/Q (including the point at infinity O).
- c_p is an elementary local factor, equal to the cardinality of $\mathcal{E}(\mathbb{Q}_p)/\mathcal{E}_0(\mathbb{Q}_p)$, where $\mathcal{E}_0(\mathbb{Q}_p)$ is the set of points in $\mathcal{E}(\mathbb{Q}_p)$ whose reduction modulo p is non-singular in $\mathcal{E}(\mathbb{F}_p)$. Notice that if p is a prime of good reduction for \mathcal{E}/\mathbb{Q} then $c_p = 1$, so only $c_p \neq 1$ only for finitely many primes p. The number c_p is usually called the Tamagawa number of \mathcal{E} at p.

From PlanetMath.org

There have been a few partial results. Among them are:

- Average rank is less than 1
- At least 10% of elliptic curves have rank 1
- At least 80% have rank 0 or 1
- The conjecture is true for a nonzero proportion of curves

If true, the conjecture would give a way to determine the rank of an elliptic curve.

Elliptic curves are important for

- Cryptography
- Digital signatures
- Factoring large numbers
- Determining if a number is prime
- Proof of Fermat's Last Theorem