
Smalltalk: The Birthday Problem

Brian Heinold

Mount St. Mary’s University

September 7, 2017

1 /95

The Birthday Problem

The Birthday Problem: How many people need to be in a room in
order for there to be a 50-50 chance that some two people in the
room have the same birthday?

A Different Problem: How many people have to be in a room with
you in order for there to be a 50-50 chance that someone has the
same birthday as you?

2 /95

The Birthday Problem

The Birthday Problem: How many people need to be in a room in
order for there to be a 50-50 chance that some two people in the
room have the same birthday?

A Different Problem: How many people have to be in a room with
you in order for there to be a 50-50 chance that someone has the
same birthday as you?

3 /95

The Birthday Problem

The Birthday Problem: How many people need to be in a room in
order for there to be a 50-50 chance that some two people in the
room have the same birthday?

A Different Problem: How many people have to be in a room with
you in order for there to be a 50-50 chance that someone has the
same birthday as you?

4 /95

The Birthday Problem

The Birthday Problem: How many people need to be in a room in
order for there to be a 50-50 chance that some two people in the
room have the same birthday? 23

A Different Problem: How many people have to be in a room with
you in order for there to be a 50-50 chance that someone has the
same birthday as you? 253

5 /95

Why it’s so few people

Imagine we have 10 people in a room with different birthdays.
Someone new walks into the room. What is the probability
their birthday matches someone else’s in the room?

10
365
≈ 3%

Another person walks in, another 3% chance of a match.

Another person walks in, another 3% chance of a match.

Etc.

How many 3% chances can we keep taking before one of
them succeeds?

And with each new person, that 3% gradually increases.

6 /95

Why it’s so few people

Imagine we have 10 people in a room with different birthdays.
Someone new walks into the room. What is the probability
their birthday matches someone else’s in the room?

10
365
≈ 3%

Another person walks in, another 3% chance of a match.

Another person walks in, another 3% chance of a match.

Etc.

How many 3% chances can we keep taking before one of
them succeeds?

And with each new person, that 3% gradually increases.

7 /95

Why it’s so few people

Imagine we have 10 people in a room with different birthdays.
Someone new walks into the room. What is the probability
their birthday matches someone else’s in the room?

10
365
≈ 3%

Another person walks in, another 3% chance of a match.

Another person walks in, another 3% chance of a match.

Etc.

How many 3% chances can we keep taking before one of
them succeeds?

And with each new person, that 3% gradually increases.

8 /95

Why it’s so few people

Imagine we have 10 people in a room with different birthdays.
Someone new walks into the room. What is the probability
their birthday matches someone else’s in the room?

10
365
≈ 3%

Another person walks in, another 3% chance of a match.

Another person walks in, another 3% chance of a match.

Etc.

How many 3% chances can we keep taking before one of
them succeeds?

And with each new person, that 3% gradually increases.

9 /95

Why it’s so few people

Imagine we have 10 people in a room with different birthdays.
Someone new walks into the room. What is the probability
their birthday matches someone else’s in the room?

10
365
≈ 3%

Another person walks in, another 3% chance of a match.

Another person walks in, another 3% chance of a match.

Etc.

How many 3% chances can we keep taking before one of
them succeeds?

And with each new person, that 3% gradually increases.

10 /95

Why it’s so few people

Imagine we have 10 people in a room with different birthdays.
Someone new walks into the room. What is the probability
their birthday matches someone else’s in the room?

10
365
≈ 3%

Another person walks in, another 3% chance of a match.

Another person walks in, another 3% chance of a match.

Etc.

How many 3% chances can we keep taking before one of
them succeeds?

And with each new person, that 3% gradually increases.

11 /95

Another way to think about it

With 23 people in room, there are
�23

2

�

= 23·22
2 = 253 possible

pairs of people.

A could have a match with B, C, . . . , W
B could have a match with C, D, . . . , W
C could have a match with D, E, . . . , W
Etc.

In order for there to be no shared birthday, all 253 of those
pairs need to work.
Things just grow from there:

With 50 people there are 1225 possible pairs.
With 100 people there are 4950 possible pairs

12 /95

Another way to think about it

With 23 people in room, there are
�23

2

�

= 23·22
2 = 253 possible

pairs of people.

A could have a match with B, C, . . . , W
B could have a match with C, D, . . . , W
C could have a match with D, E, . . . , W
Etc.

In order for there to be no shared birthday, all 253 of those
pairs need to work.
Things just grow from there:

With 50 people there are 1225 possible pairs.
With 100 people there are 4950 possible pairs

13 /95

Another way to think about it

With 23 people in room, there are
�23

2

�

= 23·22
2 = 253 possible

pairs of people.

A could have a match with B, C, . . . , W
B could have a match with C, D, . . . , W
C could have a match with D, E, . . . , W
Etc.

In order for there to be no shared birthday, all 253 of those
pairs need to work.

Things just grow from there:
With 50 people there are 1225 possible pairs.
With 100 people there are 4950 possible pairs

14 /95

Another way to think about it

With 23 people in room, there are
�23

2

�

= 23·22
2 = 253 possible

pairs of people.

A could have a match with B, C, . . . , W
B could have a match with C, D, . . . , W
C could have a match with D, E, . . . , W
Etc.

In order for there to be no shared birthday, all 253 of those
pairs need to work.
Things just grow from there:

With 50 people there are 1225 possible pairs.
With 100 people there are 4950 possible pairs

15 /95

Simulation

Let’s look at a simulation.

16 /95

Simulation code

from random import choice
from time import sleep

months = ["January", "February", "March","April", "May",
"June", "July", "August", "September", "October",
"November", "December"]

days = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]

days_of_year = []
for i in range(12):

for j in range(1, days[i]+1):
days_of_year.append(months[i] + ' ' + str(j)))

prev = set()
c = 0
while True:

x = choice(days_of_year)
print('{:2d}. {:12s} {:3.1f}% chance of repeat on next person'\

.format(c, x, 100*(c+1)/365))
if x in prev:
break

prev.add(x)
c += 1
sleep(.3)

17 /95

Simulation 1

0. April 11 0.3% chance of repeat on next person
1. May 8 0.5% chance of repeat on next person
2. May 1 0.8% chance of repeat on next person
3. November 16 1.1% chance of repeat on next person
4. September 17 1.4% chance of repeat on next person
5. January 30 1.6% chance of repeat on next person
6. February 2 1.9% chance of repeat on next person
7. July 8 2.2% chance of repeat on next person
8. August 17 2.5% chance of repeat on next person
9. February 8 2.7% chance of repeat on next person

10. April 11 3.0% chance of repeat on next person

18 /95

Simulation 2

0. August 6 0.3% chance of repeat on next person
1. January 15 0.5% chance of repeat on next person
2. April 14 0.8% chance of repeat on next person
3. February 18 1.1% chance of repeat on next person
4. July 10 1.4% chance of repeat on next person
5. August 31 1.6% chance of repeat on next person
6. September 28 1.9% chance of repeat on next person
7. July 30 2.2% chance of repeat on next person
8. March 20 2.5% chance of repeat on next person
9. December 30 2.7% chance of repeat on next person

10. May 1 3.0% chance of repeat on next person
11. July 23 3.3% chance of repeat on next person
12. April 19 3.6% chance of repeat on next person
13. April 2 3.8% chance of repeat on next person
14. June 19 4.1% chance of repeat on next person
15. October 24 4.4% chance of repeat on next person
16. May 22 4.7% chance of repeat on next person
17. December 9 4.9% chance of repeat on next person
18. July 26 5.2% chance of repeat on next person
19. April 19 5.5% chance of repeat on next person

19 /95

Simulation 3

0. June 9 0.3% chance of repeat on next person
1. January 15 0.5% chance of repeat on next person
2. March 16 0.8% chance of repeat on next person
3. April 4 1.1% chance of repeat on next person
4. November 8 1.4% chance of repeat on next person
5. September 26 1.6% chance of repeat on next person
6. February 13 1.9% chance of repeat on next person
7. January 10 2.2% chance of repeat on next person
8. October 24 2.5% chance of repeat on next person
9. May 23 2.7% chance of repeat on next person

10. January 13 3.0% chance of repeat on next person
11. March 22 3.3% chance of repeat on next person
12. May 11 3.6% chance of repeat on next person
13. January 26 3.8% chance of repeat on next person
14. December 13 4.1% chance of repeat on next person
15. May 11 4.4% chance of repeat on next person

20 /95

Simulation 4

0. February 25 0.3% chance of repeat on next person
1. June 23 0.5% chance of repeat on next person
2. September 12 0.8% chance of repeat on next person
3. January 10 1.1% chance of repeat on next person
4. May 9 1.4% chance of repeat on next person
5. September 25 1.6% chance of repeat on next person
6. October 20 1.9% chance of repeat on next person
7. January 24 2.2% chance of repeat on next person
8. April 14 2.5% chance of repeat on next person
9. April 20 2.7% chance of repeat on next person

10. June 11 3.0% chance of repeat on next person
11. November 10 3.3% chance of repeat on next person
12. March 30 3.6% chance of repeat on next person
...
45. June 8 12.6% chance of repeat on next person
46. February 24 12.9% chance of repeat on next person
47. November 11 13.2% chance of repeat on next person
48. April 26 13.4% chance of repeat on next person
49. March 3 13.7% chance of repeat on next person
50. June 20 14.0% chance of repeat on next person
51. August 6 14.2% chance of repeat on next person
52. January 12 14.5% chance of repeat on next person
53. April 14 14.8% chance of repeat on next perso

21 /95

Probabilities

in room Probability of two people sharing a birthday
5 2.7%

10 11.7%
20 41.1%
30 70.6%
40 89.1%
50 97.0%
60 99.4%
70 99.9%
80 99.99%
90 99.999%
100 99.99997%

22 /95

Probability comparison

in room Any two exactly yours
5 2.7% 1.4%

10 11.7% 2.7%
20 41.1% 5.3%
30 70.6% 7.9%
40 89.1% 10.4%
50 97.0% 12.8%
60 99.4% 15.2%
70 99.9% 17.5%
80 99.99% 19.7%
90 99.999% 21.9%
100 99.99997% 24.0%

23 /95

Where these probabilities come from

With k people in a room, the probability p of a match is

p= 1−
364
365
·

363
365
·

362
365
· · · · ·

365− (k− 1)
365

.

This comes from computing the complement of the event that all
the birthdays are different.

Use the multiplication rule to get that probability.

24 /95

Where these probabilities come from

With k people in a room, the probability p of a match is

p= 1−
364
365
·

363
365
·

362
365
· · · · ·

365− (k− 1)
365

.

This comes from computing the complement of the event that all
the birthdays are different.

Use the multiplication rule to get that probability.

25 /95

Where these probabilities come from

With k people in a room, the probability p of a match is

p= 1−
364
365
·

363
365
·

362
365
· · · · ·

365− (k− 1)
365

.

This comes from computing the complement of the event that all
the birthdays are different.

Use the multiplication rule to get that probability.

26 /95

Some math

With k people in a room, the probability p of no shared
birthdays is

p=1−
364
365
·

363
365
·

362
365
· · · · ·

365− (k− 1)
365

=1−
�

1−
1

365

��

1−
2

365

��

1−
3

365

�

. . .
�

1−
k− 1
365

�

≈1− e−1/365e−2/365 . . . e−(k−1)/365

=1− e−k(k−1)/(2·365)

≈1− e−k2/(2·365)

Invert this to get the number of people needed for there to be
a probability p of a repeat:

k≈
√

√

2 · 365 ln
�

1
1− p

�

27 /95

Some math

With k people in a room, the probability p of no shared
birthdays is

p=1−
364
365
·

363
365
·

362
365
· · · · ·

365− (k− 1)
365

=1−
�

1−
1

365

��

1−
2

365

��

1−
3

365

�

. . .
�

1−
k− 1
365

�

≈1− e−1/365e−2/365 . . . e−(k−1)/365

=1− e−k(k−1)/(2·365)

≈1− e−k2/(2·365)

Invert this to get the number of people needed for there to be
a probability p of a repeat:

k≈
√

√

2 · 365 ln
�

1
1− p

�

28 /95

Generalizing the birthday problem

There’s nothing special about birthdays.
If we generate randomly from a set of n items, the probability of a
repeat after k items is

p= 1−
n− 1

n
·

n− 2
n
·

n− 3
n
· · · · ·

n− (k− 1)
n

The number of things we need to generate before there’s a
probability p of a repeat is roughly

k=

√

√

2 · n ln
�

1
1− p

�

And, the most commonly used rule of thumb is that after
p

n
things are generated, repeats are fairly likely.

29 /95

Generalizing the birthday problem

There’s nothing special about birthdays.
If we generate randomly from a set of n items, the probability of a
repeat after k items is

p= 1−
n− 1

n
·

n− 2
n
·

n− 3
n
· · · · ·

n− (k− 1)
n

The number of things we need to generate before there’s a
probability p of a repeat is roughly

k=

√

√

2 · n ln
�

1
1− p

�

And, the most commonly used rule of thumb is that after
p

n
things are generated, repeats are fairly likely.

30 /95

Generalizing the birthday problem

There’s nothing special about birthdays.
If we generate randomly from a set of n items, the probability of a
repeat after k items is

p= 1−
n− 1

n
·

n− 2
n
·

n− 3
n
· · · · ·

n− (k− 1)
n

The number of things we need to generate before there’s a
probability p of a repeat is roughly

k=

√

√

2 · n ln
�

1
1− p

�

And, the most commonly used rule of thumb is that after
p

n
things are generated, repeats are fairly likely.

31 /95

An example

Generate random numbers from 1 to 1000.

1 What’s the probability of seeing some number twice after
generating only 10 numbers?

p= 1−
999
1000

·
998
1000

·
997

1000
· · · · ·

991
1000

≈ 5%

2 About how many will we have to generate before there’s a
25% chance of a repeat?

√

√

2 · 1000 ln
�

1
1− .25

�

≈ 24

3 About how many before a repeat is likely?

Quick estimate:
p

1000≈ 32

32 /95

An example

Generate random numbers from 1 to 1000.

1 What’s the probability of seeing some number twice after
generating only 10 numbers?

p= 1−
999
1000

·
998
1000

·
997

1000
· · · · ·

991
1000

≈ 5%

2 About how many will we have to generate before there’s a
25% chance of a repeat?

√

√

2 · 1000 ln
�

1
1− .25

�

≈ 24

3 About how many before a repeat is likely?

Quick estimate:
p

1000≈ 32

33 /95

An example

Generate random numbers from 1 to 1000.

1 What’s the probability of seeing some number twice after
generating only 10 numbers?

p= 1−
999
1000

·
998
1000

·
997

1000
· · · · ·

991
1000

≈ 5%

2 About how many will we have to generate before there’s a
25% chance of a repeat?

√

√

2 · 1000 ln
�

1
1− .25

�

≈ 24

3 About how many before a repeat is likely?

Quick estimate:
p

1000≈ 32

34 /95

An example

Generate random numbers from 1 to 1000.

1 What’s the probability of seeing some number twice after
generating only 10 numbers?

p= 1−
999
1000

·
998
1000

·
997

1000
· · · · ·

991
1000

≈ 5%

2 About how many will we have to generate before there’s a
25% chance of a repeat?

√

√

2 · 1000 ln
�

1
1− .25

�

≈ 24

3 About how many before a repeat is likely?

Quick estimate:
p

1000≈ 32

35 /95

An example

Generate random numbers from 1 to 1000.

1 What’s the probability of seeing some number twice after
generating only 10 numbers?

p= 1−
999
1000

·
998
1000

·
997

1000
· · · · ·

991
1000

≈ 5%

2 About how many will we have to generate before there’s a
25% chance of a repeat?

√

√

2 · 1000 ln
�

1
1− .25

�

≈ 24

3 About how many before a repeat is likely?

Quick estimate:
p

1000≈ 32

36 /95

An example

Generate random numbers from 1 to 1000.

1 What’s the probability of seeing some number twice after
generating only 10 numbers?

p= 1−
999
1000

·
998
1000

·
997

1000
· · · · ·

991
1000

≈ 5%

2 About how many will we have to generate before there’s a
25% chance of a repeat?

√

√

2 · 1000 ln
�

1
1− .25

�

≈ 24

3 About how many before a repeat is likely?

Quick estimate:
p

1000≈ 32

37 /95

This happened to me

I took my CD library and put it onto my computer—about
5000 songs in total. I set it to randomly play songs. After only
about 50 songs, I was hearing repeats.

Let’s calculate the chance of a repeat after only 50 songs:

p= 1−
4999
5000

·
4998
5000

·
4997
5000

· · · · ·
4951
5000

≈ 22%

Quick estimate: repeats are likely after around
p

5000≈ 70
songs

38 /95

This happened to me

I took my CD library and put it onto my computer—about
5000 songs in total. I set it to randomly play songs. After only
about 50 songs, I was hearing repeats.

Let’s calculate the chance of a repeat after only 50 songs:

p= 1−
4999
5000

·
4998
5000

·
4997
5000

· · · · ·
4951
5000

≈ 22%

Quick estimate: repeats are likely after around
p

5000≈ 70
songs

39 /95

This happened to me

I took my CD library and put it onto my computer—about
5000 songs in total. I set it to randomly play songs. After only
about 50 songs, I was hearing repeats.

Let’s calculate the chance of a repeat after only 50 songs:

p= 1−
4999
5000

·
4998
5000

·
4997
5000

· · · · ·
4951
5000

≈ 22%

Quick estimate: repeats are likely after around
p

5000≈ 70
songs

40 /95

One more example

When playing a card game where you are dealt 5 cards, there
are about 2.6 million possible hands.

Whatever the next 5-card hand you are dealt, there is only a 1
in 2.6 million chance that you will ever be dealt that exact
hand ever again.

But how likely is it that over the course of your life, you will be
dealt a hand that you had been dealt at some time in the past?

That’s the birthday problem.

After roughly
p

2,600,000≈ 1600 hands, repeats are likely.

41 /95

One more example

When playing a card game where you are dealt 5 cards, there
are about 2.6 million possible hands.

Whatever the next 5-card hand you are dealt, there is only a 1
in 2.6 million chance that you will ever be dealt that exact
hand ever again.

But how likely is it that over the course of your life, you will be
dealt a hand that you had been dealt at some time in the past?

That’s the birthday problem.

After roughly
p

2,600,000≈ 1600 hands, repeats are likely.

42 /95

One more example

When playing a card game where you are dealt 5 cards, there
are about 2.6 million possible hands.

Whatever the next 5-card hand you are dealt, there is only a 1
in 2.6 million chance that you will ever be dealt that exact
hand ever again.

But how likely is it that over the course of your life, you will be
dealt a hand that you had been dealt at some time in the past?

That’s the birthday problem.

After roughly
p

2,600,000≈ 1600 hands, repeats are likely.

43 /95

One more example

When playing a card game where you are dealt 5 cards, there
are about 2.6 million possible hands.

Whatever the next 5-card hand you are dealt, there is only a 1
in 2.6 million chance that you will ever be dealt that exact
hand ever again.

But how likely is it that over the course of your life, you will be
dealt a hand that you had been dealt at some time in the past?

That’s the birthday problem.

After roughly
p

2,600,000≈ 1600 hands, repeats are likely.

44 /95

One more example

When playing a card game where you are dealt 5 cards, there
are about 2.6 million possible hands.

Whatever the next 5-card hand you are dealt, there is only a 1
in 2.6 million chance that you will ever be dealt that exact
hand ever again.

But how likely is it that over the course of your life, you will be
dealt a hand that you had been dealt at some time in the past?

That’s the birthday problem.

After roughly
p

2,600,000≈ 1600 hands, repeats are likely.

45 /95

About the square root estimate

The quick estimate
p

2,600,000≈ 1600 is nice because it gives an
order of magnitude for when we should expect repeats. For
example:

Probability # of hands for a repeat
5% 517
20% 1078
39% 1603
50% 1899
75% 2685
99% 4894
99.999% 7738

46 /95

A security example

Suppose you are designing a system where every user
transaction is assigned a random key.

You decide to use a 64-bit key, which means keys are random
numbers between 1 and about 18,000,000,000,000,000.

It seems unlikely that two transactions will ever have the
same key.

But the birthday problem matters. After only
p

18,000,000,000,000,000≈ 4 billion transactions, a repeat
is likely.

If this is a large internet site, 4 billion transactions is quite
possible.

47 /95

A security example

Suppose you are designing a system where every user
transaction is assigned a random key.

You decide to use a 64-bit key, which means keys are random
numbers between 1 and about 18,000,000,000,000,000.

It seems unlikely that two transactions will ever have the
same key.

But the birthday problem matters. After only
p

18,000,000,000,000,000≈ 4 billion transactions, a repeat
is likely.

If this is a large internet site, 4 billion transactions is quite
possible.

48 /95

A security example

Suppose you are designing a system where every user
transaction is assigned a random key.

You decide to use a 64-bit key, which means keys are random
numbers between 1 and about 18,000,000,000,000,000.

It seems unlikely that two transactions will ever have the
same key.

But the birthday problem matters. After only
p

18,000,000,000,000,000≈ 4 billion transactions, a repeat
is likely.

If this is a large internet site, 4 billion transactions is quite
possible.

49 /95

A security example

Suppose you are designing a system where every user
transaction is assigned a random key.

You decide to use a 64-bit key, which means keys are random
numbers between 1 and about 18,000,000,000,000,000.

It seems unlikely that two transactions will ever have the
same key.

But the birthday problem matters. After only
p

18,000,000,000,000,000≈ 4 billion transactions, a repeat
is likely.

If this is a large internet site, 4 billion transactions is quite
possible.

50 /95

A security example

Suppose you are designing a system where every user
transaction is assigned a random key.

You decide to use a 64-bit key, which means keys are random
numbers between 1 and about 18,000,000,000,000,000.

It seems unlikely that two transactions will ever have the
same key.

But the birthday problem matters. After only
p

18,000,000,000,000,000≈ 4 billion transactions, a repeat
is likely.

If this is a large internet site, 4 billion transactions is quite
possible.

51 /95

Hash functions

Hash functions are used all over in cryptography and security.

Basic idea is that you feed them a string and they return a
fixed length output.

MD5 is one well-used hash function that returns 64-bit
outputs. Example hashes:

"smalltalk"
90945bf1d2c52618e38eada42b86086b

Chapter 1 of A Tale of Two Cities
ff5eb755a31ea99fca07b9fba8dd1d07

Chapter 1 of A Tale of Two Cities with first letter changed to Z
and everything else left intact
a5d7c988d5d87d1b28e1d85e77110cd1

52 /95

Hash functions

Hash functions are used all over in cryptography and security.

Basic idea is that you feed them a string and they return a
fixed length output.

MD5 is one well-used hash function that returns 64-bit
outputs. Example hashes:

"smalltalk"
90945bf1d2c52618e38eada42b86086b

Chapter 1 of A Tale of Two Cities
ff5eb755a31ea99fca07b9fba8dd1d07

Chapter 1 of A Tale of Two Cities with first letter changed to Z
and everything else left intact
a5d7c988d5d87d1b28e1d85e77110cd1

53 /95

Hash functions

Hash functions are used all over in cryptography and security.

Basic idea is that you feed them a string and they return a
fixed length output.

MD5 is one well-used hash function that returns 64-bit
outputs. Example hashes:

"smalltalk"
90945bf1d2c52618e38eada42b86086b

Chapter 1 of A Tale of Two Cities
ff5eb755a31ea99fca07b9fba8dd1d07

Chapter 1 of A Tale of Two Cities with first letter changed to Z
and everything else left intact
a5d7c988d5d87d1b28e1d85e77110cd1

54 /95

Hash functions, continued

The output of hash functions is pretty random and even small
changes in the input totally change the hash.

For these reasons, hash functions are used as fingerprints.

For instance, the hash of Chapter 1 of A Tale of Two Cities,
ff5eb755a31ea99fca07b9fba8dd1d07, is highly unlikely to
be the output of any other string created by humans in history.

Why? A 64-bit hash function has 264 ≈
18,000,000,000,000,000,000 possible outputs, far more than
the number of strings created by humans in history.

55 /95

Hash functions, continued

The output of hash functions is pretty random and even small
changes in the input totally change the hash.

For these reasons, hash functions are used as fingerprints.

For instance, the hash of Chapter 1 of A Tale of Two Cities,
ff5eb755a31ea99fca07b9fba8dd1d07, is highly unlikely to
be the output of any other string created by humans in history.

Why? A 64-bit hash function has 264 ≈
18,000,000,000,000,000,000 possible outputs, far more than
the number of strings created by humans in history.

56 /95

Hash functions, continued

The output of hash functions is pretty random and even small
changes in the input totally change the hash.

For these reasons, hash functions are used as fingerprints.

For instance, the hash of Chapter 1 of A Tale of Two Cities,
ff5eb755a31ea99fca07b9fba8dd1d07, is highly unlikely to
be the output of any other string created by humans in history.

Why? A 64-bit hash function has 264 ≈
18,000,000,000,000,000,000 possible outputs, far more than
the number of strings created by humans in history.

57 /95

Hash functions, continued

The output of hash functions is pretty random and even small
changes in the input totally change the hash.

For these reasons, hash functions are used as fingerprints.

For instance, the hash of Chapter 1 of A Tale of Two Cities,
ff5eb755a31ea99fca07b9fba8dd1d07, is highly unlikely to
be the output of any other string created by humans in history.

Why? A 64-bit hash function has 264 ≈
18,000,000,000,000,000,000 possible outputs, far more than
the number of strings created by humans in history.

58 /95

Hash functions and the birthday problem

Hashes are used in digital signatures: A person sending you a
document can compute its hash, and you can compute its
hash when you get the document. If the hashes match, then
you know the document you got is the same as what the
person sent.

Birthday problem: If we generate
p

18 quintillion≈ 4 billion
strings, it is likely that some pair of them have the same MD5
hash.

59 /95

Hash functions and the birthday problem

Hashes are used in digital signatures: A person sending you a
document can compute its hash, and you can compute its
hash when you get the document. If the hashes match, then
you know the document you got is the same as what the
person sent.

Birthday problem: If we generate
p

18 quintillion≈ 4 billion
strings, it is likely that some pair of them have the same MD5
hash.

60 /95

Hash functions and the birthday problem

Suppose I want to defraud you:
I write up a contract agreeing to pay you $100 for something

I also write up a fraudulent version agreeing to only pay $10
for that same thing.

I generate a few billion subtle variations on the $100 contract
(adding extra spaces, words, whatever).

I generate a few billion subtle variations on the $10 contract as
well.

Eventually, I will get a hash collision where one of the $100
variations matches one of the $10 variations.

Since they both have the same hash, you might think you
have the real one, but you actually have a fake one.

61 /95

Hash functions and the birthday problem

Suppose I want to defraud you:
I write up a contract agreeing to pay you $100 for something

I also write up a fraudulent version agreeing to only pay $10
for that same thing.

I generate a few billion subtle variations on the $100 contract
(adding extra spaces, words, whatever).

I generate a few billion subtle variations on the $10 contract as
well.

Eventually, I will get a hash collision where one of the $100
variations matches one of the $10 variations.

Since they both have the same hash, you might think you
have the real one, but you actually have a fake one.

62 /95

Hash functions and the birthday problem

Suppose I want to defraud you:
I write up a contract agreeing to pay you $100 for something

I also write up a fraudulent version agreeing to only pay $10
for that same thing.

I generate a few billion subtle variations on the $100 contract
(adding extra spaces, words, whatever).

I generate a few billion subtle variations on the $10 contract as
well.

Eventually, I will get a hash collision where one of the $100
variations matches one of the $10 variations.

Since they both have the same hash, you might think you
have the real one, but you actually have a fake one.

63 /95

Hash functions and the birthday problem

Suppose I want to defraud you:
I write up a contract agreeing to pay you $100 for something

I also write up a fraudulent version agreeing to only pay $10
for that same thing.

I generate a few billion subtle variations on the $100 contract
(adding extra spaces, words, whatever).

I generate a few billion subtle variations on the $10 contract as
well.

Eventually, I will get a hash collision where one of the $100
variations matches one of the $10 variations.

Since they both have the same hash, you might think you
have the real one, but you actually have a fake one.

64 /95

Hash functions and the birthday problem

Suppose I want to defraud you:
I write up a contract agreeing to pay you $100 for something

I also write up a fraudulent version agreeing to only pay $10
for that same thing.

I generate a few billion subtle variations on the $100 contract
(adding extra spaces, words, whatever).

I generate a few billion subtle variations on the $10 contract as
well.

Eventually, I will get a hash collision where one of the $100
variations matches one of the $10 variations.

Since they both have the same hash, you might think you
have the real one, but you actually have a fake one.

65 /95

Hash functions and the birthday problem

Suppose I want to defraud you:
I write up a contract agreeing to pay you $100 for something

I also write up a fraudulent version agreeing to only pay $10
for that same thing.

I generate a few billion subtle variations on the $100 contract
(adding extra spaces, words, whatever).

I generate a few billion subtle variations on the $10 contract as
well.

Eventually, I will get a hash collision where one of the $100
variations matches one of the $10 variations.

Since they both have the same hash, you might think you
have the real one, but you actually have a fake one.

66 /95

Hash functions and the birthday problem

For this reason, 64-bit hash functions are no longer
considered secure (even though they are still widely used).

Even 128-bit hash functions (with 1038 possible outputs) are
not considered secure.

This is because
p

2128 = 264 = 1018, which is a lot of variations
to make, but within the reach of well-funded nation states.

So 256-bit hash functions are recommended.

67 /95

Hash functions and the birthday problem

For this reason, 64-bit hash functions are no longer
considered secure (even though they are still widely used).

Even 128-bit hash functions (with 1038 possible outputs) are
not considered secure.

This is because
p

2128 = 264 = 1018, which is a lot of variations
to make, but within the reach of well-funded nation states.

So 256-bit hash functions are recommended.

68 /95

Hash functions and the birthday problem

For this reason, 64-bit hash functions are no longer
considered secure (even though they are still widely used).

Even 128-bit hash functions (with 1038 possible outputs) are
not considered secure.

This is because
p

2128 = 264 = 1018, which is a lot of variations
to make, but within the reach of well-funded nation states.

So 256-bit hash functions are recommended.

69 /95

Hash functions and the birthday problem

For this reason, 64-bit hash functions are no longer
considered secure (even though they are still widely used).

Even 128-bit hash functions (with 1038 possible outputs) are
not considered secure.

This is because
p

2128 = 264 = 1018, which is a lot of variations
to make, but within the reach of well-funded nation states.

So 256-bit hash functions are recommended.

70 /95

Wifi and the birthday problem

The original security scheme for Wifi is called WEP.

It used something called a stream cipher to encrypt
communications.

The one thing to know about stream ciphers is: Do not reuse
the encryption keys.

If you do, it’s trivially easy to crack.

71 /95

Wifi and the birthday problem

The original security scheme for Wifi is called WEP.

It used something called a stream cipher to encrypt
communications.

The one thing to know about stream ciphers is: Do not reuse
the encryption keys.

If you do, it’s trivially easy to crack.

72 /95

Wifi and the birthday problem

The original security scheme for Wifi is called WEP.

It used something called a stream cipher to encrypt
communications.

The one thing to know about stream ciphers is: Do not reuse
the encryption keys.

If you do, it’s trivially easy to crack.

73 /95

Wifi and the birthday problem

The original security scheme for Wifi is called WEP.

It used something called a stream cipher to encrypt
communications.

The one thing to know about stream ciphers is: Do not reuse
the encryption keys.

If you do, it’s trivially easy to crack.

74 /95

Wifi and the birthday problem, continued

For WEP, the wireless access point and your computer share a
master key.

To make a different key for each message, a random number
called an initialization vector (IV) is combined with the
master key.

This would be fine, except they used 24-bit IVs.

A 24-bit IV would mean 16 million possible encryption keys

Now the birthday problem comes in:
p

224 = 212 = 4096

After 4096 messages, repeated keys are likely.

This is the amount of traffic you get on a typical network in a
few minutes.

75 /95

Wifi and the birthday problem, continued

For WEP, the wireless access point and your computer share a
master key.

To make a different key for each message, a random number
called an initialization vector (IV) is combined with the
master key.

This would be fine, except they used 24-bit IVs.

A 24-bit IV would mean 16 million possible encryption keys

Now the birthday problem comes in:
p

224 = 212 = 4096

After 4096 messages, repeated keys are likely.

This is the amount of traffic you get on a typical network in a
few minutes.

76 /95

Wifi and the birthday problem, continued

For WEP, the wireless access point and your computer share a
master key.

To make a different key for each message, a random number
called an initialization vector (IV) is combined with the
master key.

This would be fine, except they used 24-bit IVs.

A 24-bit IV would mean 16 million possible encryption keys

Now the birthday problem comes in:
p

224 = 212 = 4096

After 4096 messages, repeated keys are likely.

This is the amount of traffic you get on a typical network in a
few minutes.

77 /95

Wifi and the birthday problem, continued

For WEP, the wireless access point and your computer share a
master key.

To make a different key for each message, a random number
called an initialization vector (IV) is combined with the
master key.

This would be fine, except they used 24-bit IVs.

A 24-bit IV would mean 16 million possible encryption keys

Now the birthday problem comes in:
p

224 = 212 = 4096

After 4096 messages, repeated keys are likely.

This is the amount of traffic you get on a typical network in a
few minutes.

78 /95

Wifi and the birthday problem, continued

For WEP, the wireless access point and your computer share a
master key.

To make a different key for each message, a random number
called an initialization vector (IV) is combined with the
master key.

This would be fine, except they used 24-bit IVs.

A 24-bit IV would mean 16 million possible encryption keys

Now the birthday problem comes in:
p

224 = 212 = 4096

After 4096 messages, repeated keys are likely.

This is the amount of traffic you get on a typical network in a
few minutes.

79 /95

Wifi and the birthday problem, continued

For WEP, the wireless access point and your computer share a
master key.

To make a different key for each message, a random number
called an initialization vector (IV) is combined with the
master key.

This would be fine, except they used 24-bit IVs.

A 24-bit IV would mean 16 million possible encryption keys

Now the birthday problem comes in:
p

224 = 212 = 4096

After 4096 messages, repeated keys are likely.

This is the amount of traffic you get on a typical network in a
few minutes.

80 /95

Wifi and the birthday problem, continued

For WEP, the wireless access point and your computer share a
master key.

To make a different key for each message, a random number
called an initialization vector (IV) is combined with the
master key.

This would be fine, except they used 24-bit IVs.

A 24-bit IV would mean 16 million possible encryption keys

Now the birthday problem comes in:
p

224 = 212 = 4096

After 4096 messages, repeated keys are likely.

This is the amount of traffic you get on a typical network in a
few minutes.

81 /95

DNS and the birthday problem

DNS is the system that translates human-readable domain
names like www.msmary.edu into numerical IP addresses like
216.230.103.23 that computers use.

When you want to go to a website, you ask a machine run by
your service provider to do a DNS lookup for you.

That machine asks other machines on the internet for the
answer.

If an attacker can return an answer before the real answer
arrives, then the attacker’s answer will be accepted.

The attacker can use this to make it so that when you go to
gmail.com, you are actually directed to a fake gmail site,
where they can phish your username and password.

82 /95

DNS and the birthday problem

DNS is the system that translates human-readable domain
names like www.msmary.edu into numerical IP addresses like
216.230.103.23 that computers use.

When you want to go to a website, you ask a machine run by
your service provider to do a DNS lookup for you.

That machine asks other machines on the internet for the
answer.

If an attacker can return an answer before the real answer
arrives, then the attacker’s answer will be accepted.

The attacker can use this to make it so that when you go to
gmail.com, you are actually directed to a fake gmail site,
where they can phish your username and password.

83 /95

DNS and the birthday problem

DNS is the system that translates human-readable domain
names like www.msmary.edu into numerical IP addresses like
216.230.103.23 that computers use.

When you want to go to a website, you ask a machine run by
your service provider to do a DNS lookup for you.

That machine asks other machines on the internet for the
answer.

If an attacker can return an answer before the real answer
arrives, then the attacker’s answer will be accepted.

The attacker can use this to make it so that when you go to
gmail.com, you are actually directed to a fake gmail site,
where they can phish your username and password.

84 /95

DNS and the birthday problem

DNS is the system that translates human-readable domain
names like www.msmary.edu into numerical IP addresses like
216.230.103.23 that computers use.

When you want to go to a website, you ask a machine run by
your service provider to do a DNS lookup for you.

That machine asks other machines on the internet for the
answer.

If an attacker can return an answer before the real answer
arrives, then the attacker’s answer will be accepted.

The attacker can use this to make it so that when you go to
gmail.com, you are actually directed to a fake gmail site,
where they can phish your username and password.

85 /95

DNS and the birthday problem

DNS is the system that translates human-readable domain
names like www.msmary.edu into numerical IP addresses like
216.230.103.23 that computers use.

When you want to go to a website, you ask a machine run by
your service provider to do a DNS lookup for you.

That machine asks other machines on the internet for the
answer.

If an attacker can return an answer before the real answer
arrives, then the attacker’s answer will be accepted.

The attacker can use this to make it so that when you go to
gmail.com, you are actually directed to a fake gmail site,
where they can phish your username and password.

86 /95

DNS and the birthday problem, continued

However, DNS queries have an ID that the attacker must guess
right.

There are 216 = 65536 possible IDs, so guessing is hard.

One more thing: the machine your ISP uses stores the
answers to the DNS queries it does, so that if someone else
with the same provider as you recently went to msmary.edu,
the DNS machine will store the resulting IP address to save
time from having to ask remote machines for the answer.

87 /95

DNS and the birthday problem, continued

However, DNS queries have an ID that the attacker must guess
right.

There are 216 = 65536 possible IDs, so guessing is hard.

One more thing: the machine your ISP uses stores the
answers to the DNS queries it does, so that if someone else
with the same provider as you recently went to msmary.edu,
the DNS machine will store the resulting IP address to save
time from having to ask remote machines for the answer.

88 /95

DNS and the birthday problem, continued

However, DNS queries have an ID that the attacker must guess
right.

There are 216 = 65536 possible IDs, so guessing is hard.

One more thing: the machine your ISP uses stores the
answers to the DNS queries it does, so that if someone else
with the same provider as you recently went to msmary.edu,
the DNS machine will store the resulting IP address to save
time from having to ask remote machines for the answer.

89 /95

DNS and the birthday problem, continued

Now the birthday problem comes into play.

An attacker creates a bunch of fake requests that it asks the
service provider’s DNS machine to make.

At the same time, it sends back a bunch of bogus replies to
those queries.

Most of those won’t have matching IDs, but the attacker just
needs one fake answer to match one fake request and then
that result will be stored in memory for a while, affecting
many of the service provider’s customers.

By the birthday problem, they need only create aroundp
216 = 28 = 256 bogus requests, which is easy.

90 /95

DNS and the birthday problem, continued

Now the birthday problem comes into play.

An attacker creates a bunch of fake requests that it asks the
service provider’s DNS machine to make.

At the same time, it sends back a bunch of bogus replies to
those queries.

Most of those won’t have matching IDs, but the attacker just
needs one fake answer to match one fake request and then
that result will be stored in memory for a while, affecting
many of the service provider’s customers.

By the birthday problem, they need only create aroundp
216 = 28 = 256 bogus requests, which is easy.

91 /95

DNS and the birthday problem, continued

Now the birthday problem comes into play.

An attacker creates a bunch of fake requests that it asks the
service provider’s DNS machine to make.

At the same time, it sends back a bunch of bogus replies to
those queries.

Most of those won’t have matching IDs, but the attacker just
needs one fake answer to match one fake request and then
that result will be stored in memory for a while, affecting
many of the service provider’s customers.

By the birthday problem, they need only create aroundp
216 = 28 = 256 bogus requests, which is easy.

92 /95

DNS and the birthday problem, continued

Now the birthday problem comes into play.

An attacker creates a bunch of fake requests that it asks the
service provider’s DNS machine to make.

At the same time, it sends back a bunch of bogus replies to
those queries.

Most of those won’t have matching IDs, but the attacker just
needs one fake answer to match one fake request and then
that result will be stored in memory for a while, affecting
many of the service provider’s customers.

By the birthday problem, they need only create aroundp
216 = 28 = 256 bogus requests, which is easy.

93 /95

DNS and the birthday problem, continued

Now the birthday problem comes into play.

An attacker creates a bunch of fake requests that it asks the
service provider’s DNS machine to make.

At the same time, it sends back a bunch of bogus replies to
those queries.

Most of those won’t have matching IDs, but the attacker just
needs one fake answer to match one fake request and then
that result will be stored in memory for a while, affecting
many of the service provider’s customers.

By the birthday problem, they need only create aroundp
216 = 28 = 256 bogus requests, which is easy.

94 /95

In conclusion. . .

A fun little math problem turns out to have big
consequences in computer security. The examples

shown here are just a few of many more.

Thanks for your attention!

95 /95

