Smalltalk 3/7/13

 $\begin{array}{c} e \\ \text{Brian Heinold} \end{array}$

< ₽

 $1^{1} \\ 1.1^{10} \\ 1.01^{100} \\ 1.001^{1000} \\ 1.0001^{10000} \\$

. . .

 $1^{1} = 1$ $1.1^{10} = 2.593...$ $1.01^{100} = 2.704...$ $1.001^{1000} = 2.716...$ $1.0001^{10000} = 2.718...$

. . .

(日) (四) (日) (日) (日) (日) (日)

A more general formula

The previous is a special case of

$$e = \lim\left(1 + \frac{1}{n}\right)^n$$

A more general formula

The previous is a special case of

$$e = \lim \left(1 + \frac{1}{n}\right)^{n}$$
$$\left(1 + \frac{1}{2}\right)^{2}$$
$$\left(1 + \frac{1}{3}\right)^{3}$$
$$\left(1 + \frac{1}{4}\right)^{4}$$
$$\left(1 + \frac{1}{5}\right)^{5}$$

A more general formula

The previous is a special case of

$$e = \lim \left(1 + \frac{1}{n}\right)^{n}$$
$$\left(1 + \frac{1}{2}\right)^{2}$$
$$\left(1 + \frac{1}{3}\right)^{3}$$
$$\left(1 + \frac{1}{4}\right)^{4}$$
$$\left(1 + \frac{1}{5}\right)^{5}$$

In general,

$$e^x = \lim\left(1 + \frac{x}{n}\right)^n$$

• 1000 at 35% interest after 1 year:

• \$1000 at 35% interest after 1 year:

1000(1+.35) = \$1350.00

• \$1000 at 35% interest after 1 year:

1000(1+.35) = \$1350.00

• Compounded once a month:

• \$1000 at 35% interest after 1 year:

$$1000\,(1+.35) = \$1350.00$$

• Compounded once a month:

$$1000\left(1+\frac{.35}{12}\right)^{12} = \$1411.98$$

• \$1000 at 35% interest after 1 year:

$$1000\,(1+.35) = \$1350.00$$

• Compounded once a month:

$$1000\left(1+\frac{.35}{12}\right)^{12} = \$1411.98$$

• Compounded once daily:

• \$1000 at 35% interest after 1 year:

$$1000\,(1+.35) = \$1350.00$$

• Compounded once a month:

$$1000\left(1+\frac{.35}{12}\right)^{12} = \$1411.98$$

• Compounded once daily:

$$1000\left(1+\frac{.35}{365}\right)^{365} = \$1418.83$$

• \$1000 at 35% interest after 1 year:

$$1000\,(1+.35) = \$1350.00$$

• Compounded once a month:

$$1000\left(1+\frac{.35}{12}\right)^{12} = \$1411.98$$

• Compounded once daily:

$$1000\left(1+\frac{.35}{365}\right)^{365} = \$1418.83$$

• Compounded once a second:

• \$1000 at 35% interest after 1 year:

$$1000\,(1+.35) = \$1350.00$$

• Compounded once a month:

$$1000\left(1+\frac{.35}{12}\right)^{12} = \$1411.98$$

• Compounded once daily:

$$1000\left(1+\frac{.35}{365}\right)^{365} = \$1418.83$$

• Compounded once a second:

$$1000\left(1+\frac{.35}{31536000}\right)^{31536000} = \$1419.07$$

• \$1000 at 35% interest after 1 year:

$$1000\,(1+.35) = \$1350.00$$

• Compounded once a month:

$$1000\left(1+\frac{.35}{12}\right)^{12} = \$1411.98$$

• Compounded once daily:

$$1000\left(1+\frac{.35}{365}\right)^{365} = \$1418.83$$

• Compounded once a second:

$$1000\left(1+\frac{.35}{31536000}\right)^{31536000} = \$1419.07$$

• Compounded continuously:

• \$1000 at 35% interest after 1 year:

$$1000\,(1+.35) = \$1350.00$$

• Compounded once a month:

$$1000\left(1+\frac{.35}{12}\right)^{12} = \$1411.98$$

• Compounded once daily:

$$1000\left(1+\frac{.35}{365}\right)^{365} = \$1418.83$$

• Compounded once a second:

$$1000\left(1+\frac{.35}{31536000}\right)^{31536000} = \$1419.07$$

• Compounded continuously:

$$1000e^{.05} = \$1419.07$$

Computed digits of e (from Wikipedia)

Number	of known	decimal	digits of e
--------	----------	---------	-------------

Date	Decimal digits	Computation performed by
1748	23	Leonhard Euler ^[19]
1853	137	William Shanks
1871	205	William Shanks
1884	346	J. Marcus Boorman
1949	2,010	John von Neumann (on the ENIAC)
1961	100,265	Daniel Shanks and John Wrench ^[20]
1978	116,000	Stephen Gary Wozniak (on the Apple $II^{[24]}$)
1994 April 1	1,000,000	Robert Nemiroff & Jerry Bonnell [22]
1999 November 21	1,250,000,000	Xavier Gourdon ^[23]
2000 July 16	3,221,225,472	Colin Martin & Xavier Gourdon ^[24]
2003 September 18	50,100,000,000	Shigeru Kondo & Xavier Gourdon ^[25]
2007 April 27	100,000,000,000	Shigeru Kondo & Steve Pagliarulo ^[26]
2009 May 6	200,000,000,000	Rajesh Bohara & Steve Pagliarulo ^[26]
2010 July 5	1,000,000,000,000	Shigeru Kondo & Alexander J. Yee ^[27]

- e^x is best known for being its own derivative.
- It is essentially the only function with that property.
- Why?

Derivative of $y = 2^x$

Derivative is the slope of the tangent line.

Approximate it by secant lines.

slope =
$$\frac{2^{x+h} - 2^x}{(x+h) - x} = \frac{2^h - 1}{h} 2^x$$

As $h \to 0$, we approach the slope of the tangent line.

slope =
$$\frac{2^{x+h} - 2^x}{(x+h) - x} = \frac{2^h - 1}{h} 2^x$$

• This is a constant times 2^x .

slope =
$$\frac{2^{x+h} - 2^x}{(x+h) - x} = \frac{2^h - 1}{h} 2^x$$

《曰》 《圖》 《臣》 《臣》

크

- This is a constant times 2^x .
- But $\frac{2^h-1}{h} \rightarrow .693$

slope =
$$\frac{2^{x+h} - 2^x}{(x+h) - x} = \frac{2^h - 1}{h} 2^x$$

《曰》 《圖》 《臣》 《臣》

크

- This is a constant times 2^x .
- But $\frac{2^h-1}{h} \rightarrow .693$

• If we try
$$3^x$$
, $\frac{3^h-1}{h} \rightarrow 1.099$

slope =
$$\frac{2^{x+h} - 2^x}{(x+h) - x} = \frac{2^h - 1}{h} 2^x$$

・ロト ・四ト ・ヨト ・ 王

- This is a constant times 2^x .
- But $\frac{2^h-1}{h} \rightarrow .693$

• If we try
$$3^x$$
, $\frac{3^h-1}{h} \to 1.099$

• If we try
$$4^x$$
, $\frac{4^h-1}{h} \to 1.386$ (getting worse)

slope =
$$\frac{2^{x+h} - 2^x}{(x+h) - x} = \frac{2^h - 1}{h} 2^x$$

・部・・モト・モー

- This is a constant times 2^x .
- But $\frac{2^h-1}{h} \to .693$

• If we try
$$3^x$$
, $\frac{3^h-1}{h} \to 1.099$

- If we try 4^x , $\frac{4^h-1}{h} \to 1.386$ (getting worse)
- The value that works is $e \approx 2.718$: $\frac{e^h 1}{h} \rightarrow 1$

slope =
$$\frac{2^{x+h} - 2^x}{(x+h) - x} = \frac{2^h - 1}{h} 2^x$$

・部・・モト・モー

- This is a constant times 2^x .
- But $\frac{2^h-1}{h} \to .693$

• If we try
$$3^x$$
, $\frac{3^h-1}{h} \to 1.099$

- If we try 4^x , $\frac{4^h-1}{h} \to 1.386$ (getting worse)
- The value that works is $e \approx 2.718$: $\frac{e^h 1}{h} \rightarrow 1$

$$\begin{array}{l} \frac{e^{h}-1}{h}\approx 1\\ e^{h}\approx 1+h\\ e\approx (1+h)^{1/h}\\ \mathrm{Let}\;n=1/h\\ e\approx (1+\frac{1}{n})^{n} \end{array}$$

 $\log_b a$ answers the question: b to what power equals a?

Logarithms

 $\log_b a$ answers the question: b to what power equals a? Example: $\log_5(25) = 2$ because $5^2 = 25$

Logarithms

 $\log_b a$ answers the question: b to what power equals a? Example: $\log_5(25) = 2$ because $5^2 = 25$

x	$y = \log_{10} x$
1	0
10	1
100	2
1000	3
10000	4

A multiplicative change in x corresponds to an additive change in y.

Formally,

$$\log(ab) = \log(a) + \log(b)$$

Logarithms and Integrals

$$\int x^n dx = \frac{x^{n+1}}{n+1}$$
. But what if $n = -1$?

Logarithms and Integrals

$$\int x^n dx = \frac{x^{n+1}}{n+1}.$$
 But what if $n = -1$?
$$\int_1^x \frac{1}{t} dt$$
 is the area under $y = 1/x$ from $t = 1$ to $t = x$.

→ 《三→

< □ ▶ < 🗗

Logarithms and Integrals

$$\int x^n \, dx = \frac{x^{n+1}}{n+1}.$$
 But what if $n = -1$?
$$\int_1^x \frac{1}{t} \, dt$$
 is the area under $y = 1/x$ from $t = 1$ to $t = x$.
1
1/2 Each has area 1/2
1/4 1/8 1/16 1/32
1 2 4 8 16 32

A multiplicative change in x corresponds to an additive change in the area.

$$\int_{1}^{x} \frac{1}{t} dt = \log x.$$

But what is the base?

$$\int_{1}^{x} \frac{1}{t} dt = \log x.$$

But what is the base?

The base is e.

$$\int_{1}^{x} \frac{1}{t} dt = \log_e x = \ln x.$$

$$\int_{1}^{x} \frac{1}{t} dt = \log x.$$

But what is the base?

The base is e.

$$\int_{1}^{x} \frac{1}{t} dt = \log_e x = \ln x.$$

But why not something else, like base 7 or base 443.18?

$$\int_{1}^{x} \frac{1}{t} dt = \log x.$$

But what is the base?

The base is e.

$$\int_{1}^{x} \frac{1}{t} dt = \log_e x = \ln x.$$

But why not something else, like base 7 or base 443.18?
Say we want
$$\int_{1}^{32} \frac{1}{x} dx$$
.

Say we want $\int_{1}^{32} \frac{1}{x} dx$. Suppose instead of powers of 2, we use something smaller, like powers of r = 1.5The smaller rectangles will fit the area more closely.

How many rectangles will there be?

 $1rr^2r^3r^4$

r⁵

r⁶

Say we want $\int_{1}^{32} \frac{1}{x} dx$. Suppose instead of powers of 2, we use something smaller, like powers of r = 1.5The smaller rectangles will fit the area more closely.

How many rectangles will there be? Answer: Find the largest power of r less than 32.

.7

32

 $1rr^2r^3r^4$

r⁵

,6

Say we want $\int_{1}^{32} \frac{1}{x} dx$. Suppose instead of powers of 2, we use something smaller, like powers of r = 1.5The smaller rectangles will fit the area more closely.

How many rectangles will there be? Answer: Find the largest power of r less than 32. In other words, solve $r^x = 32$. We get $x = \frac{\log(32)}{\log r}$.

.7

32

Why base e, cont.

The area is then $\frac{\log(32)}{\log r}(r-1)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ Q ()

Why base e, cont.

The area is then $\frac{\log(32)}{\log r}(r-1)$.

Suppose we go smaller than 1.5, say to $r = 1 + \frac{1}{n}$ for some small value of n.

Why base e, cont.

The area is then $\frac{\log(32)}{\log r}(r-1)$.

Suppose we go smaller than 1.5, say to $r = 1 + \frac{1}{n}$ for some small value of n.

The area is then

$$\begin{aligned} &\frac{\log(32)}{\log(1+\frac{1}{n})}(1+\frac{1}{n}-1) \\ &=\frac{\log(32)}{n\log(1+\frac{1}{n})} \\ &=\frac{\log(32)}{\log(1+\frac{1}{n})^n} \\ &=\log_{(1+\frac{1}{n})^n}(32) \end{aligned}$$

As $n \to \infty$, this becomes $\log_e(32)$.

In summary, e is so important in calculus because:

- $f(x) = e^x$ is (more or less) the only function whose derivative is itself
- $\log_e(x)$ is the antiderivative of $\frac{1}{x}$.

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \cdots$$

・ロト ・雪ト ・ヨト ・

≣ ▶

From Taylor series or binomial theorem on $(1 + \frac{1}{n})^n$

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \cdots$$

・ロト ・四ト ・ヨト ・

From Taylor series or binomial theorem on $(1 + \frac{1}{n})^n$

$$\begin{aligned} 1 + \frac{1}{1!} &= 2 \\ 1 + \frac{1}{1!} + \frac{1}{2!} &= 2.5 \\ 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} &= 2.6666667 \\ 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} &= 2.708333 \\ 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} &= 2.716666 \\ 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \frac{1}{6!} &= 2.718055 \end{aligned}$$

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \cdots$$

・ロト ・雪ト ・ヨト ・

≣ ▶

From Taylor series or binomial theorem on $(1 + \frac{1}{n})^n$

$$\begin{aligned} 1 + \frac{1}{1!} &= 2 \\ 1 + \frac{1}{1!} + \frac{1}{2!} &= 2.5 \\ 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} &= 2.6666667 \\ 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} &= 2.708333 \\ 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} &= 2.716666 \\ 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \frac{1}{6!} &= 2.718055 \\ \text{In general, } e^x &= 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots \end{aligned}$$

 e^x is directly related to $\sin x$ and $\cos x$:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

 e^x is directly related to $\sin x$ and $\cos x$:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

If you plug in $\theta = \pi$, you get...

 e^x is directly related to $\sin x$ and $\cos x$:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

If you plug in $\theta = \pi$, you get...

"The most remarkable formula in mathematics"

$$e^{i\pi} + 1 = 0$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - 約9(0)

e is irrational

Proof: Suppose $e = \frac{p}{q}$. Using the power series for e, we have

$$\frac{p}{q} = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{q!} + \frac{1}{(q+1)!} + \dots$$

Proof: Suppose $e = \frac{p}{q}$. Using the power series for e, we have

$$\frac{p}{q} = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{q!} + \frac{1}{(q+1)!} + \dots$$

Multiply both sides by q! to get

$$p(q-1)! = q! + q! + q(q-1) \dots 3 \cdot 2 + \dots + 1 + \frac{1}{q+1} + \frac{1}{(q+1)(q+2)} + \dots$$

Proof: Suppose $e = \frac{p}{q}$. Using the power series for e, we have

$$\frac{p}{q} = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{q!} + \frac{1}{(q+1)!} + \dots$$

Multiply both sides by q! to get

$$p(q-1)! = q! + q! + q(q-1) \dots 3 \cdot 2 + \dots + 1 + \frac{1}{q+1} + \frac{1}{(q+1)(q+2)} + \dots$$

The left side is an integer. The right side is not because $\frac{1}{q+1} + \frac{1}{(q+1)(q+2)} + \dots < 1.$ Contradiction!

If you want the details...

Even if q = 2, we have $\frac{1}{3} + \frac{1}{12} + \frac{1}{60} + \dots$, which is small

If you want the details...

Even if q = 2, we have $\frac{1}{3} + \frac{1}{12} + \frac{1}{60} + \dots$, which is small Formally,

$$\frac{1}{q+1} + \frac{1}{(q+1)(q+2)} + \dots$$

$$\leq \frac{1}{2+1} + \frac{1}{(2+1)(2+2)} + \dots$$

$$< \frac{1}{3} + \frac{1}{3^2} + \dots$$

$$= \frac{1}{1 - \frac{1}{3}} - 1$$

$$= \frac{1}{2}$$

1

・聞き ・ ほき・ ・ ほき・ …

Catenary

What is the shape of a wire hanging between two points?

Catenary

What is the shape of a wire hanging between two points?

It's called a *catenary* and its equation is $y = \frac{a}{2} \left(e^{x/a} + e^{-x/a} \right)$.

A famous Catenary

(Gateway Arch in St. Louis)

n = 2: 12, 21 (2 total)

n = 3: 123, 132, 213, 231, 312, 321 (6 total)

n = 4: 1234, 1243, ..., 4321 (24 total)

n = 2: 12, 21 (2 total)

n = 3: 123, 132, 213, 231, 312, 321 (6 total)

n = 4: 1234, 1243, ..., 4321 (24 total)

In general it's n!.

n = 2: 12, 21 (2 total)

n = 3: 123, 132, 213, 231, 312, 321 (6 total)

n = 4: 1234, 1243, ..., 4321 (24 total)

In general it's n!.

How many ways are there to rearrange so that no number stays fixed?

n = 2: 12, 21 (2 total)

n = 3: 123, 132, 213, 231, 312, 321 (6 total)

n = 4: 1234, 1243, ..., 4321 (24 total)

In general it's n!.

How many ways are there to rearrange so that no number stays fixed?

This is called a *derangement*.

A curious number

n	Derangements (d_n)	Rearrangements (r_n)	d_n/r_n
1	0	1	0.000000
2	1	2	0.500000
3	2	6	0.333333
4	9	24	0.375000
5	44	120	0.366667
6	265	720	0.368155
$\overline{7}$	1854	5040	0.367857
8	14833	40320	0.367881
9	133496	362880	0.367879
10	1334961	3628800	0.367879

What value is the d_n/r_n approaching?

A curious number

n	Derangements (d_n)	Rearrangements (r_n)	d_n/r_n
1	0	1	0.000000
2	1	2	0.500000
3	2	6	0.333333
4	9	24	0.375000
5	44	120	0.366667
6	265	720	0.368155
$\overline{7}$	1854	5040	0.367857
8	14833	40320	0.367881
9	133496	362880	0.367879
10	1334961	3628800	0.367879

 $\frac{1}{e}$

What value is the d_n/r_n approaching?

• e is called Euler's constant or Napier's constant

- e is called Euler's constant or Napier's constant
- In early 1600s John Napier invented logarithms

- e is called Euler's constant or Napier's constant
- In early 1600s John Napier invented logarithms
- The method he used to generate his tables involved *e* although he didn't recognize it in the way we now know it

- e is called Euler's constant or Napier's constant
- In early 1600s John Napier invented logarithms
- The method he used to generate his tables involved *e* although he didn't recognize it in the way we now know it
- Jacob Bernoulli discovered e in late 1600s studying compound interest

- e is called Euler's constant or Napier's constant
- In early 1600s John Napier invented logarithms
- The method he used to generate his tables involved *e* although he didn't recognize it in the way we now know it
- Jacob Bernoulli discovered e in late 1600s studying compound interest
- Leonhard Euler in 1700s gave it the symbol e

- e is called Euler's constant or Napier's constant
- In early 1600s John Napier invented logarithms
- The method he used to generate his tables involved *e* although he didn't recognize it in the way we now know it
- Jacob Bernoulli discovered e in late 1600s studying compound interest
- Leonhard Euler in 1700s gave it the symbol e
- $\bullet\,$ Euler did a lot with e
• Bell curve
$$y = e^{-x^2/2}$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ 釣�?

< □ ▶ < 🗗

▶ ∢ ≣ ▶

• Bell curve
$$y = e^{-x^2/2}$$

•
$$\int_0^\infty e^{-x^2/2} = \sqrt{\pi/2}$$

- Bell curve $y = e^{-x^2/2}$
- $\int_0^\infty e^{-x^2/2} = \sqrt{\pi/2}$
- Infinite product: $2 = \frac{e^1}{e^{1/2}} \cdot \frac{e^{1/3}}{e^{1/4}} \cdot \frac{e^{1/5}}{e^{1/6}} \cdot \frac{e^{1/7}}{e^{1/8}} \dots$

- Bell curve $y = e^{-x^2/2}$
- $\int_0^\infty e^{-x^2/2} = \sqrt{\pi/2}$
- Infinite product: $2 = \frac{e^1}{e^{1/2}} \cdot \frac{e^{1/3}}{e^{1/4}} \cdot \frac{e^{1/5}}{e^{1/6}} \cdot \frac{e^{1/7}}{e^{1/8}} \dots$
- A continued fraction:

- Bell curve $y = e^{-x^2/2}$
- $\int_0^\infty e^{-x^2/2} = \sqrt{\pi/2}$
- Infinite product: $2 = \frac{e^1}{e^{1/2}} \cdot \frac{e^{1/3}}{e^{1/4}} \cdot \frac{e^{1/5}}{e^{1/6}} \cdot \frac{e^{1/7}}{e^{1/8}} \dots$
- A continued fraction:

$$e = 2 + \frac{1}{1 + \frac{1}{2 + \frac{2}{3 + \frac{3}{4 + \frac{4}{5 + \dots}}}}}$$

• Stirling's formula $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$

- Bell curve $y = e^{-x^2/2}$
- $\int_0^\infty e^{-x^2/2} = \sqrt{\pi/2}$
- Infinite product: $2 = \frac{e^1}{e^{1/2}} \cdot \frac{e^{1/3}}{e^{1/4}} \cdot \frac{e^{1/5}}{e^{1/6}} \cdot \frac{e^{1/7}}{e^{1/8}} \dots$
- A continued fraction:

$$e = 2 + \frac{1}{1 + \frac{1}{2 + \frac{2}{3 + \frac{3}{4 + \frac{3}{5 + \dots}}}}}$$

• Stirling's formula $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$

•
$$\sqrt{e^{\pi}} = \sqrt[i]{i}$$

- Bell curve $y = e^{-x^2/2}$
- $\int_0^\infty e^{-x^2/2} = \sqrt{\pi/2}$
- Infinite product: $2 = \frac{e^1}{e^{1/2}} \cdot \frac{e^{1/3}}{e^{1/4}} \cdot \frac{e^{1/5}}{e^{1/6}} \cdot \frac{e^{1/7}}{e^{1/8}} \dots$
- A continued fraction:

$$e = 2 + \frac{1}{1 + \frac{1}{2 + \frac{2}{3 + \frac{2}{3 + \frac{4}{5 + \dots}}}}}$$

- Stirling's formula $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$
- $\sqrt{e^{\pi}} = \sqrt[i]{i}$
- Google's 2004 IPO announced they were trying to raise \$2,718,281,828.

Thank you for your attention.

