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What is this sequence approaching?

11

1.110
1.01190
1.0011000
1.0001 10000



It is approaching e ~ 2.718

1'=1
1.119=2.593...
1.01190 = 2,704 .
1.0011000 — 2, 716
1.000110000 — 9 718. .
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In general,

e = lim (1 n 3)"
n
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Continuous interest

e $1000 at 35% interest after 1 year:
1000 (1 + .35) = $1350.00

Compounded once a month:

(]

Compounded once daily:

365

= $1418.
365 = $1418.83

Compounded once a second:

1 1+
000 < 31536000

Compounded continuously:
1000 = $1419.07
e

1000 (1 + - > = $1411.98

1000 <1 +

(]

31536000
) = $1419.07



e to 1000 digits

2.71828182845904523536028747135266249775724709369995957496696 762
7724076630353547594571382178525166427427466391932003059921817413
5966290435729003342952605956307381323286279434907632338298807531
9525101901157383418793070215408914993488416750924476146066808226
4800168477411853742345442437107539077744992069551702761838606261
3313845830007520449338265602976067371132007093287091274437470472
3069697720931014169283681902551510865746377211125238978442505695
3696770785449969967946864454905987931636889230098793127736178215
4249992295763514822082698951936680331825288693984964651058209392
3982948879332036250944311730123819706841614039701983767932068328
2376464804295311802328782509819455815301756717361332069811250996
1818815930416903515988885193458072738667385894228792284998920868
0582574927961048419844436346324496848756023362482704197862320900
2160990235304369941849146314093431738143640546253152096183690888
707016768396424378140592714563549061303107208510383 7505101157477
041718986106873969655212671546889570350354. . .



Computed digits of e (from Wikipedia)

Date
1748
1853
1871
1584
1949
1961
1978
1994 April 1
19599 Movemnber 21
2000 July 16

2003 September 18

2007 April 27
2009 May B
2010 July 5

Number of known decimal digits of &
Decimal digits Computation performed by
23| Leonhard Euler!'®
137 Williarm Shanks
205 William Shanks
346 J. Marcus Boorman
2,010 John van Meumann (on the EMIACY
100,265 Daniel Shanks and John WrenchEY
116,000| Stephen Gary Wozniak (on the Appls BT
1,000,000 Robert Mermiroff & Jerry Bonnell B2
1,250,000,000 | ¥avier Gourdon &1
3221 225 472| Colin Martin & Xavier Gourdon B9
50,100,000,000| Shigeru Konda & Xavier Gourdon &%)
100,000 000,000 Shigeru Kondo & Steve Pagliarlo B
200,000,000,000| Rajesh Bohara & Steve Pagliarulo 291

1,000,000 ,000,000| Shigeru Kondo & Alexander J. Yes B7)



Derivatives

@ ¢” is best known for being its own derivative.
o It is essentially the only function with that property.
o Why?



Derivative of y = 2%

Derivative is the slope of the tangent line.

Approximate it by secant lines.

x+h

2

7

21+h _ oz 2h -1
1 = = 27
Sope (x+h)—=z h

As h — 0, we approach the slope of the tangent line.
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Sope (x+h)—=z h

o This is a constant times 2%.
o But -1 — 693
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If we try 3%, =5— — 1.099
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Derivatives

2x+h _ oz 2h -1
Sope (x+h)—=z h

@ This is a constant times 2%.
o But -1 — 693

If we try 3%, 3'~1 — 1.099

o If we try 47, 4hh_1 — 1.386 (getting worse)

@ The value that works is e ~ 2.718: ehh_l —1

ehfl,\,
TN]'

e ~1+h
e~ (14 h)t/h
Let n=1/h
em(l—i—%)”
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Logarithms

log; a answers the question: b to what power equals a?

Example: logs(25) = 2 because 52 = 25

z |y=log,e
1 0
10 1
100 2
1000 | 3
10000 | 4
A multiplicative change in z corresponds to an additive change
in y.
Formally,

log(ab) = log(a) + log(b)
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Logarithms and Integrals

n

[a"dx = fl:f But what if n = —1?

flx%dt is the area under y = 1/x from t =1 to t = z.



Logarithms and Integrals

xn+1

[a"dx = T

But what if n = —17

T L dt is the area under y = 1/ from t = 1 to ¢t = x.
11

1 |
1/2 Each has area 1/2
1/4
1/8
1/16 1/32
12 4 8 16 32

A multiplicative change in = corresponds to an additive change
in the area.
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T
/ —dt = log x.
1

<~

But what is the base?

The base is e. -
/ —dt =log,z =Inz.
1 ¢

But why not something else, like base 7 or base 443.187
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Why base e

32 1
Say we want / —dx.
1 T

Suppose instead of powers of 2, we use something smaller, like
powers of r = 1.5
The smaller rectangles will fit the area more closely.

\

|

\ Each has area = r-1

8
1rs? 2 5 o i I r 32

How many rectangles will there be?
Answer: Find the largest power of r less than 32.

In other words, solve r* = 32. We get x = bli(g?’f).
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Why base e, cont.

B0 (r —1).

The area is then

Suppose we go smaller than 1.5, say tor =1+ % for some small
value of n.

The area is then
log(32) 1

—(1+—=-1
log(1+ 1) ( n )

B log(32)

“nlog(l+ 1)

B log(32)

_log(l + %)”

As n — oo, this becomes log,(32).



e in calculus

In summary, e is so important in calculus because:

o f(z)=e€" is (more or less) the only function whose
derivative is itself

o log.(z) is the antiderivative of 1.
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From Taylor series or binomial theorem on (1 + %)”



Infinite series

1 1 1 1
e=1 —|— + + 3] + +
From Taylor series or binomial theorem on (1 + %)”
14+ 4 =2

1+%+%:2.5



Infinite series

1 1 1 1
e—1+ + +3'+ +-

From Taylor series or binomial theorem on (1 + %)”
14+ 4 =2
1+%+§:25
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Euler’s formula

e” is directly related to sinz and cos z:
e = cosf +isinf
If you plug in § = 7, you get. ..

“The most remarkable formula in mathematics”

em+1=0
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e is irrational

Proof: Suppose e = %' Using the power series for e, we have

R N I A S
qg 12 q9  (g+1)!

Multiply both sides by ¢! to get

1 1
p(g—1)! = ¢!+q'+q(q—1) ... 32+ - +1+ + +
(=1 =y i1 @ g+ 2)
The left side is an integer. The right side is not because

1 1
a1 T ey T < b

Contradiction!
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If you want the details. ..

Evenifq:2,wehave%+%+&+...,Whichissmall
Formally,
1 1
+
g+1 (¢g+1)(g+2)
< ! + ! +
241 (2+1)(2+2)
Sl
stgt-
= - —
l—3
1
2



shape of a wire hanging between two points?




It’s called a catenary and its equation is y = § (ex/“ + e_x/a).



A famous Catenary

(Gateway Arch in St.
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Derangements

How many ways are there to rearrange the numbers 1, 2, ..., n?
n =2: 12, 21 (2 total)

n =3: 123, 132, 213, 231, 312, 321 (6 total)

n=4: 1234, 1243, ..., 4321 (24 total)

In general it’s n!.

How many ways are there to rearrange so that no number stays
fixed?

This is called a derangement.



A curious number

n | Derangements (d,,) | Rearrangements (ry,) | dn/rn

1 |0 1 0.000000
2 |1 2 0.500000
3 |2 6 0.333333
4 19 24 0.375000
5 |44 120 0.366667
6 | 265 720 0.368155
7 | 1854 5040 0.367857
8 | 14833 40320 0.367881
9 | 133496 362880 0.367879
10 | 1334961 3628800 0.367879

What value is the d,,/r, approaching?



A curious number

n | Derangements (d,,) | Rearrangements (ry,) | dn/rn

1 |0 1 0.000000
2 |1 2 0.500000
3 |2 6 0.333333
4 19 24 0.375000
5 |44 120 0.366667
6 | 265 720 0.368155
7 | 1854 5040 0.367857
8 | 14833 40320 0.367881
9 | 133496 362880 0.367879
10 | 1334961 3628800 0.367879

What value is the d,,/r, approaching?
1

(&
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e is called Fuler’s constant or Napier’s constant

o In early 1600s John Napier invented logarithms

@ The method he used to generate his tables involved e
although he didn’t recognize it in the way we now know it

o Jacob Bernoulli discovered e in late 1600s studying
compound interest

o Leonhard Euler in 1700s gave it the symbol e

o Euler did a lot with e
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Interesting facts and formulas

o Bell curve y = e=2°/2

ofoooe_$2/2: /2

. 1 1/3 1/5 1/7
o Infinite product: 2= 55 - 55 - S5 - S5
o A continued fraction:
1
e=2+ T
4+TZIM

e Stirling’s formula n! ~ v2mn (%)n

o Ver =i

o Google’s 2004 TPO announced they were trying to raise

$2,718,281,828.



Thank you for your attention.




