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What is this sequence approaching?

11

1.110

1.01100

1.0011000

1.000110000

. . .



It is approaching e ≈ 2.718

11 = 1
1.110 = 2.593 . . .
1.01100 = 2.704 . . .
1.0011000 = 2.716 . . .
1.000110000 = 2.718 . . .
. . .



A more general formula

The previous is a special case of
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Continuous interest

$1000 at 35% interest after 1 year:

1000 (1 + .35) = $1350.00

Compounded once a month:

1000

(
1 +

.35

12

)12

= $1411.98

Compounded once daily:

1000

(
1 +

.35

365

)365

= $1418.83

Compounded once a second:

1000

(
1 +

.35

31536000

)31536000

= $1419.07

Compounded continuously:

1000e.05 = $1419.07
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e to 1000 digits

2.71828182845904523536028747135266249775724709369995957496696762

7724076630353547594571382178525166427427466391932003059921817413

5966290435729003342952605956307381323286279434907632338298807531

9525101901157383418793070215408914993488416750924476146066808226

4800168477411853742345442437107539077744992069551702761838606261

3313845830007520449338265602976067371132007093287091274437470472

3069697720931014169283681902551510865746377211125238978442505695

3696770785449969967946864454905987931636889230098793127736178215

4249992295763514822082698951936680331825288693984964651058209392

3982948879332036250944311730123819706841614039701983767932068328

2376464804295311802328782509819455815301756717361332069811250996

1818815930416903515988885193458072738667385894228792284998920868

0582574927961048419844436346324496848756023362482704197862320900

2160990235304369941849146314093431738143640546253152096183690888

7070167683964243781405927145635490613031072085103837505101157477

041718986106873969655212671546889570350354. . .



Computed digits of e (from Wikipedia)



Derivatives

ex is best known for being its own derivative.

It is essentially the only function with that property.

Why?



Derivative of y = 2x

Derivative is the slope of the tangent line.

Approximate it by secant lines.

slope =
2x+h − 2x

(x+ h)− x
=

2h − 1

h
2x

As h→ 0, we approach the slope of the tangent line.



Derivatives

slope =
2x+h − 2x

(x+ h)− x
=

2h − 1

h
2x

This is a constant times 2x.

But 2h−1
h → .693

If we try 3x, 3h−1
h → 1.099

If we try 4x, 4h−1
h → 1.386 (getting worse)

The value that works is e ≈ 2.718: eh−1
h → 1

eh−1
h ≈ 1

eh ≈ 1 + h
e ≈ (1 + h)1/h

Let n = 1/h
e ≈ (1 + 1

n)n
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Logarithms

logb a answers the question: b to what power equals a?

Example: log5(25) = 2 because 52 = 25

x y = log10 x

1 0
10 1
100 2
1000 3
10000 4

A multiplicative change in x corresponds to an additive change
in y.

Formally,
log(ab) = log(a) + log(b)
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Logarithms and Integrals

∫
xn dx = xn+1

n+1 . But what if n = −1?

∫ x
1

1
t dt is the area under y = 1/x from t = 1 to t = x.

A multiplicative change in x corresponds to an additive change
in the area.
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What base?

This leads to ∫ x

1

1

t
dt = log x.

But what is the base?

The base is e. ∫ x

1

1

t
dt = loge x = lnx.

But why not something else, like base 7 or base 443.18?
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Why base e

Say we want

∫ 32

1

1

x
dx.

Suppose instead of powers of 2, we use something smaller, like
powers of r = 1.5
The smaller rectangles will fit the area more closely.

How many rectangles will there be?
Answer: Find the largest power of r less than 32.
In other words, solve rx = 32. We get x = log(32)

log r .
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Why base e, cont.

The area is then log(32)
log r (r − 1).

Suppose we go smaller than 1.5, say to r = 1 + 1
n for some small

value of n.

The area is then

log(32)

log(1 + 1
n)

(1 +
1

n
− 1)

=
log(32)

n log(1 + 1
n)

=
log(32)

log(1 + 1
n)n

= log(1+ 1
n
)n(32)

As n→∞, this becomes loge(32).
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e in calculus

In summary, e is so important in calculus because:

f(x) = ex is (more or less) the only function whose
derivative is itself

loge(x) is the antiderivative of 1
x .



Infinite series

e = 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+ · · ·

From Taylor series or binomial theorem on (1 + 1
n)n

1 + 1
1! = 2

1 + 1
1! + 1

2! = 2.5

1 + 1
1! + 1

2! + 1
3! = 2.666667

1 + 1
1! + 1

2! + 1
3! + 1

4! = 2.708333

1 + 1
1! + 1

2! + 1
3! + 1

4! + 1
5! = 2.716666

1 + 1
1! + 1

2! + 1
3! + 1

4! + 1
5! + 1

6! = 2.718055

In general, ex = 1 + x
1! + x2

2! + x3

3! + x4

4! + · · ·
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Euler’s formula

ex is directly related to sinx and cosx:

eiθ = cos θ + i sin θ

If you plug in θ = π, you get. . .

“The most remarkable formula in mathematics”

eiπ + 1 = 0
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“The most remarkable formula in mathematics”

eiπ + 1 = 0



e is irrational

Proof: Suppose e = p
q . Using the power series for e, we have

p

q
= 1 +

1

1!
+

1

2!
+ · · ·+ 1

q!
+

1

(q + 1)!
+ . . .

Multiply both sides by q! to get

p(q−1)! = q!+q!+q(q−1) . . . 3·2+· · ·+1+
1

q + 1
+

1

(q + 1)(q + 2)
+. . .

The left side is an integer. The right side is not because
1
q+1 + 1

(q+1)(q+2) + · · · < 1.

Contradiction!
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If you want the details. . .

Even if q = 2, we have 1
3 + 1

12 + 1
60 + . . . , which is small

Formally,

1

q + 1
+

1

(q + 1)(q + 2)
+ . . .

≤ 1

2 + 1
+

1

(2 + 1)(2 + 2)
+ . . .

<
1

3
+

1

32
+ . . .

=
1

1− 1
3

− 1

=
1

2
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Catenary

What is the shape of a wire hanging between two points?

It’s called a catenary and its equation is y = a
2

(
ex/a + e−x/a

)
.



Catenary

What is the shape of a wire hanging between two points?

It’s called a catenary and its equation is y = a
2

(
ex/a + e−x/a

)
.



A famous Catenary

(Gateway Arch in St. Louis)



Derangements

How many ways are there to rearrange the numbers 1, 2, . . . , n?

n = 2: 12, 21 (2 total)

n = 3: 123, 132, 213, 231, 312, 321 (6 total)

n = 4: 1234, 1243, . . . , 4321 (24 total)

In general it’s n!.

How many ways are there to rearrange so that no number stays
fixed?

This is called a derangement.
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A curious number

n Derangements (dn) Rearrangements (rn) dn/rn
1 0 1 0.000000
2 1 2 0.500000
3 2 6 0.333333
4 9 24 0.375000
5 44 120 0.366667
6 265 720 0.368155
7 1854 5040 0.367857
8 14833 40320 0.367881
9 133496 362880 0.367879
10 1334961 3628800 0.367879

What value is the dn/rn approaching?

1

e
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History

e is called Euler’s constant or Napier’s constant

In early 1600s John Napier invented logarithms

The method he used to generate his tables involved e
although he didn’t recognize it in the way we now know it

Jacob Bernoulli discovered e in late 1600s studying
compound interest

Leonhard Euler in 1700s gave it the symbol e

Euler did a lot with e
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Interesting facts and formulas

Bell curve y = e−x
2/2

∫∞
0 e−x

2/2 =
√
π/2

Infinite product: 2 = e1

e1/2
· e1/3
e1/4
· e1/5
e1/6
· e1/7
e1/8

. . .

A continued fraction:

e = 2 +
1

1 + 1
2+ 2

3+ 3

4+ 4
5+...

Stirling’s formula n! ≈
√

2πn
(
n
e

)n
√
eπ = i

√
i

Google’s 2004 IPO announced they were trying to raise
$2,718,281,828.
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Thanks!

Thank you for your attention.


