Is it all in your imagination? Brian Heinold

• Definition:
$$i = \sqrt{-1}$$

æ

《曰》 《聞》 《臣》 《臣》

• Definition: $i = \sqrt{-1}$

• Specifically, i is a number such that $i^2 = -1$.

1

▶ ★ 문 ▶ ★ 문 ▶ ...

- Definition: $i = \sqrt{-1}$
- Specifically, i is a number such that $i^2 = -1$.
- This is nonsensical. A number times itself must be positive, right?

In 1545, Girolamo Cardano, who was the first to write about them, called them

"as subtle as they are useless"

In 1572, Rafael Bombelli, who developed the rules for working with them, said

"The whole matter seems to rest on sophistry rather than truth."

In 1702 Gottfried von Leibniz, co-inventor of calculus, called i

"that amphibian between existence and nonexistence""

In 1770 Leonhard Euler, arguably the greatest mathematician of all time, wrote about

"numbers, which from their nature are impossible; and therefore they are usually called imaginary quantities, because they exist merely in the imagination...

But notwithstanding this, these numbers present themselves to the mind; they exist in our imagination, and we still have a sufficient idea of them.

Picturing real and imaginary numbers

Picturing complex numbers

Put the reals and imaginaries together to get $\mathbb{C},$ the complex numbers.

Picturing complex numbers

Every complex number is a combination of a real part and an imaginary part.

Our numbers are two-dimensional now!

Use the rules of algebra:

$$i^2 = -1$$

Use the rules of algebra:

$$i^2 = -1$$

$$(3+4i) + (6+3i) = 9+7i$$

Use the rules of algebra:

$$i^2 = -1$$

$$(3+4i) + (6+3i) = 9+7i$$

$$(3+4i) \times (6+3i) = 18 + 9i + 24i + 12i^2 = 6 + 33i$$

Use the rules of algebra:

$$i^2 = -1$$

$$(3+4i) + (6+3i) = 9+7i$$

$$(3+4i) \times (6+3i) = 18 + 9i + 24i + 12i^2 = 6 + 33i$$

$$\frac{3+4i}{6+3i} = \frac{3+4i}{6+3i} \cdot \frac{6-3i}{6-3i} = \frac{30+12i}{25} = \frac{6}{5} + \frac{12}{25}i$$

(ロト 4回 ト 4回 ト 4回 ト 1回 三 ろんの

Multiplication by i corresponds to rotation by 90° .

In general, multiplying two complex numbers corresponds to adding their angles and multiplying their lengths.

- Complex numbers are applicable in places where rotation naturally fits.
- There are a number of such places in physics where complex numbers considerably simplify things:
 - Electromagnetic field
 - $\bullet~$ electric portion real part
 - magnetic portion imaginary part
 - Electrical circuit
 - capacitance real part
 - $\bullet \ {\rm inductance} {\rm imaginary} \ {\rm part} \\$

• Cardano's solution of the cubic used imaginary numbers, even for solutions which were ultimately real.

- Cardano's solution of the cubic used imaginary numbers, even for solutions which were ultimately real.
- Cauchy integral formula/residue theorem Some difficult real integrals can be easily computed by finding where the function has poles in the complex plane.

- Cardano's solution of the cubic used imaginary numbers, even for solutions which were ultimately real.
- Cauchy integral formula/residue theorem Some difficult real integrals can be easily computed by finding where the function has poles in the complex plane.
- Complex analysis used to prove the Prime Number theorem (number of primes less than n is $\approx \frac{n}{\ln n}$).

- Cardano's solution of the cubic used imaginary numbers, even for solutions which were ultimately real.
- Cauchy integral formula/residue theorem Some difficult real integrals can be easily computed by finding where the function has poles in the complex plane.
- Complex analysis used to prove the Prime Number theorem (number of primes less than n is $\approx \frac{n}{\ln n}$).
- Jacques Hadamard (1865-1963): "the shortest path between two truths in the real domain passes through the complex domain."

$$e^{i\theta} = \cos\theta + i\sin\theta$$

> < 문 > < 문 >

E

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Ties together some of the most important functions in math.

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Ties together some of the most important functions in math.

"The most remarkable formula in all of math":

$$e^{i\pi} + 1 = 0.$$

Proof that $e^{i\theta} = \cos\theta + i\sin\theta$

Taylor series:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$
$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots$$
$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots$$

Proof that $e^{i\theta} = \cos\theta + i\sin\theta$

Taylor series:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots$$

$$e^{ix} = 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \dots$$
$$= \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots\right) + i\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots\right)$$

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● のへで

• $e^{i\theta} = \cos \theta + i \sin \theta$ provides a compact way to represent waves and oscillations.

• $e^{i\theta} = \cos \theta + i \sin \theta$ provides a compact way to represent waves and oscillations.

•
$$i^i = (e^{i\pi/2})^i = e^{i^2\pi/2} = e^{-\pi/2} = .2078...$$

• Power series for
$$\frac{1}{1-x^2}$$
 is $1 + x^2 + x^4 + x^6 + \dots$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆○へ⊙

- Power series for $\frac{1}{1-x^2}$ is $1 + x^2 + x^4 + x^6 + \dots$
- It is valid only if -1 < x < 1.

- Power series for $\frac{1}{1-x^2}$ is $1 + x^2 + x^4 + x^6 + \dots$
- It is valid only if -1 < x < 1.

- Power series for $\frac{1}{1-x^2}$ is $1 + x^2 + x^4 + x^6 + \dots$
- It is valid only if -1 < x < 1.

• This is because $\frac{1}{1-x^2}$ has vertical asymptotes at ± 1 , which prevent the power series from working past them.

• Power series for
$$\frac{1}{1+x^2}$$
 is $1 - x^2 + x^4 - x^6 + \dots$

・ロト ・四ト ・ヨト ・ヨト ・日・ つんの

- Power series for $\frac{1}{1+x^2}$ is $1-x^2+x^4-x^6+...$
- It is also only valid if -1 < x < 1.
Complex numbers make their presence felt on the reals

- Power series for $\frac{1}{1+x^2}$ is $1 x^2 + x^4 x^6 + \dots$
- It is also only valid if -1 < x < 1.
- But why? There's no asymptotes.

Complex numbers make their presence felt on the reals

- Power series for $\frac{1}{1+x^2}$ is $1-x^2+x^4-x^6+...$
- It is also only valid if -1 < x < 1.
- But why? There's no asymptotes.

Complex numbers make their presence felt on the reals

- Power series for $\frac{1}{1+x^2}$ is $1 x^2 + x^4 x^6 + ...$
- It is also only valid if -1 < x < 1.
- But why? There's no asymptotes.

• The denominator has asymptotes at $\pm i$

So, how can imaginary numbers be imaginary if they have real effects?

Hyperbolic functions from calculus

• Not periodic like $\sin x$ and $\cos x$.

Hyperbolic functions from calculus

- Not periodic like $\sin x$ and $\cos x$.
- But $\frac{d}{dx} \sinh x = \cosh x$ and vice-versa.

Hyperbolic functions from calculus

- Not periodic like $\sin x$ and $\cos x$.
- But $\frac{d}{dx} \sinh x = \cosh x$ and vice-versa.
- Also, they satisfy many of the same kinds of identities as ordinary trig functions:
 - $\sinh^2 x \cosh^2 x = 1$
 - $\sinh(2x) = 2\sinh x \cosh x$
 - $\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y$

• From Euler's formula we get

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$
 $\cos z = \frac{e^{iz} + e^{-iz}}{2}$

• From Euler's formula we get

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} \quad \cos z = \frac{e^{iz} + e^{-iz}}{2}$$

• From this, we get $\sin z = -i \sinh(iz)$ and $\cos z = \cosh(iz)$.

• From Euler's formula we get

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$
 $\cos z = \frac{e^{iz} + e^{-iz}}{2}$

- From this, we get $\sin z = -i \sinh(iz)$ and $\cos z = \cosh(iz)$.
- In other words, sinh and cosh *are* periodic, just on the *imaginary* axis.

• From Euler's formula we get

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$
 $\cos z = \frac{e^{iz} + e^{-iz}}{2}$

- From this, we get $\sin z = -i \sinh(iz)$ and $\cos z = \cosh(iz)$.
- In other words, sinh and cosh *are* periodic, just on the *imaginary* axis.
- On the imaginary axis, sin z and cos z behave like sinh z and cosh z on the real axis.

 \bullet Every polynomial has a root in $\mathbb C$

 \bullet Every polynomial has a root in $\mathbb C$

•
$$\sin x = 3 \longrightarrow x = \frac{\pi}{2} + i\ln(3 + 2\sqrt{2})$$

 \bullet Every polynomial has a root in $\mathbb C$

•
$$\sin x = 3 \longrightarrow x = \frac{\pi}{2} + i\ln(3 + 2\sqrt{2})$$

•
$$\ln(-1) = i\pi$$

• $\log z$ is the inverse of e^z .

- $\log z$ is the inverse of e^z .
- e^z is periodic along the imaginary axis.

- $\log z$ is the inverse of e^z .
- e^z is periodic along the imaginary axis.
- So, $e^z = -1$ has infinitely many solutions: $e^{\pi i}, e^{2\pi i}, e^{3\pi i}, \dots$

- $\log z$ is the inverse of e^z .
- e^z is periodic along the imaginary axis.
- So, $e^z = -1$ has infinitely many solutions: $e^{\pi i}, e^{2\pi i}, e^{3\pi i}, \dots$
- This means $\log z$ is actually multivalued.

• This is an example of a *Riemann surface*

Roots of unity

x² = 1 → x = ±1 (2 roots, 180° apart on unit circle)
x⁴ = 1 → x = ±1, ±i (4 roots, 90° apart on unit circle)

Roots of unity

- What about $x^3 = 1$?
- 3 roots, spaced $120^{\circ}(2\pi/3 \text{ rad})$ apart on unit circle
- x = 1, $\cos(2\pi i/3) + \sin(2\pi i/3)$, $\cos(4\pi/3) + \sin(4\pi/3)$
- Can write as $x = e^{2\pi i k/3}$ for k = 1, 2, 3.

Roots of unity

In general, $x^n = 1$ has *n* roots, spaced $2\pi/n$ rad apart

The roots are $e^{2\pi i k/n}$ for $k = 1, 2, \ldots, n$.

Using Newton's method to find the roots of unity

Mandelbrot set

• Question: Could we add more dimensions to make different kinds of numbers?

- Question: Could we add more dimensions to make different kinds of numbers?
- Answer: Yes and no. Yes we can, and we can get things like the *quaternions* and *octonions*.

- Question: Could we add more dimensions to make different kinds of numbers?
- Answer: Yes and no. Yes we can, and we can get things like the *quaternions* and *octonions*.
- But, no, we can't get anything as nice as C. Adding dimensions causes you to lose nice properties like commutativity and associativity.

- Question: Could we add more dimensions to make different kinds of numbers?
- Answer: Yes and no. Yes we can, and we can get things like the *quaternions* and *octonions*.
- But, no, we can't get anything as nice as C. Adding dimensions causes you to lose nice properties like commutativity and associativity.
- So C is the largest as we can get without giving up things we'd rather not give up.

• Negative numbers for millennia were considered "unreal"

Are negative numbers real?

- Negative numbers for millennia were considered "unreal"
- Negatives don't make sense for many things
 - There are -5 people in this room
 - I am -6 feet tall.
 - etc.

Are negative numbers real?

- Negative numbers for millennia were considered "unreal"
- Negatives don't make sense for many things
 - There are -5 people in this room
 - I am -6 feet tall.
 - etc.
- But they are a natural fit for many other things:
 - Money: credit = + , debt = -
 - Motion: forward = +, backwards = -
 - etc.

Are fractions real?

- Fractions don't make sense for many things:
 - I have $\frac{2}{3}$ sisters.
 - There are $\frac{17}{19}$ books on my shelf.
 - etc.

Are fractions real?

- Fractions don't make sense for many things:
 - I have $\frac{2}{3}$ sisters.
 - There are $\frac{17}{19}$ books on my shelf.
 - etc.
- But they are a natural fit for many other things:
 - I ate $\frac{1}{3}$ of a pizza
 - I walked $\frac{2}{3}$ of a mile
 - etc.

• Imaginary numbers don't make sense for anything in everyday life.

- Imaginary numbers don't make sense for anything in everyday life.
- But they are a natural fit for many things in math and physics (circuits, waves, ...)

- Imaginary numbers don't make sense for anything in everyday life.
- But they are a natural fit for many things in math and physics (circuits, waves, ...)
- But...

- Imaginary numbers don't make sense for anything in everyday life.
- But they are a natural fit for many things in math and physics (circuits, waves, ...)
- But...

Leopold Kronecker (late 1800s): "God created the natural numbers; all else is the work of man."
Are imaginary numbers real?

- Imaginary numbers don't make sense for anything in everyday life.
- But they are a natural fit for many things in math and physics (circuits, waves, ...)
- But...

Leopold Kronecker (late 1800s): "God created the natural numbers; all else is the work of man."

• But then do even the natural numbers exist?

Are imaginary numbers real?

- Imaginary numbers don't make sense for anything in everyday life.
- But they are a natural fit for many things in math and physics (circuits, waves, ...)
- But...

Leopold Kronecker (late 1800s): "God created the natural numbers; all else is the work of man."

- But then do even the natural numbers exist?
- What exactly is the number 2 for instance?

Are imaginary numbers real?

- Imaginary numbers don't make sense for anything in everyday life.
- But they are a natural fit for many things in math and physics (circuits, waves, ...)
- But...

Leopold Kronecker (late 1800s): "God created the natural numbers; all else is the work of man."

- But then do even the natural numbers exist?
- What exactly is the number 2 for instance?
- My answer: Complex numbers are as real as any other kind of number; they just don't appear in everyday life.

Thank you for your attention.

- Cardano http://en.wikipedia.org/wiki/Gerolamo_Cardano
- Bombelli http://www.learn-math.info/historyDetail.htm?id=Bombelli

▶ ▲ 토 ▶ ▲ 토 ▶

- Leibniz http://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz
- Euler http://en.wikipedia.org/wiki/Leonhard_Euler