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Apportionment

435 seats in the House of Representatives. That number is
fixed by law.

States are represented based on what proportion of the
population they have.

Simplified example:

Country with a 9-seat House. States A and B each have 30%
of the population and C has 40%.

A and B should each get 30% of 9 = 2.7 seats.
C should get 40% of 9 = 3.6 seats.

How to handle the fractions of a seat?
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Apportionment, continued

Lots of schemes have been devised. Which is best?

A set of reasonable ground rules:

1 Quota rule — Each state’s number should be gotten by either
rounding up or down to the nearest whole number.

2 Alabama paradox — If we increase the total number of seats,
no state’s number of seats should go down.

3 Population paradox — If A’s population goes up and B’s goes
down, it should not happen that A loses a seat and B gains one.

Seems reasonable, right?
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Apportionment, continued

In 1983, Michel Balinski and Peyton Young proved that if
there are at least three states, no apportionment method can
satisfy all three of these reasonable requirements.

If you’re okay with breaking the Quota rule, then you can
avoid the two paradoxes, but if you insist on the Quota rule,
then you can construct scenarios where the paradoxes will
occur for your apportionment method.
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Voting

Let’s look at voting systems where everyone ranks the choices.
How to decide a winner? Several common techniques:

1 Plurality — Most first place votes wins.

2 Borda count — Assign points for first-place votes,
second-place votes, etc. Most points wins.

3 Condorcet — Compare candidates head-to-head. Most
head-to-head victories wins.

4 Sequential run-offs — candidate with least number of first
place votes is eliminated, then do a runoff with remaining
candidates and eliminate lowest, etc. until there is a winner.

5 Others. . .
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Voting, continued

Which system is best?

A reasonable set of fairness conditions:

1 Consensus — If everyone prefers A to B, then the system should
rank A ahead of B.

2 No dictators — If only a single voter prefers A to B, and no one
else does, then the system should rank B higher than A.

3 Independence of a third alternative — The system’s ranking of A
versus B should not be affected by voter preferences for a third
candidate C.

In 1952, Nobel Laureate Kenneth Arrow proved that there is
no ranked voting system that satisfies all of these conditions
(if there are more than 2 candidates).
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Asking for too much

Let’s assume the following is true:

Rule #1: There is an exception to every rule.

That’s a rule. Does it have an exception?

Sure. What does an exception to Rule #1 mean?

It means there is a rule with no exceptions. That means Rule
#1 is not true.

This is a paradox, a contraction. It is an example of a
statement where we’re asking for too much.

It also demonstrates the key idea of what follows — feeding
the rule back into itself to derive a contradiction.
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Liar paradox

Consider this statement:

This statement is false.

If it’s a true statement, then by what it says, it must be false.

If it’s a false statement, then by what it says, it must be true.

Either way, we have a contradiction.
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Another logical paradox

Question: In a logic class, your whole grade is based on a
single statement you have to make. If you make a true
statement, then you get a course grade of 20% and you fail
the course. If you make a false statement, then you get a
grade of 10% and you fail the course. What can you say?

Answer: “I am going to get a grade of 10% in the course.”

This can’t be a true statement, because if it were true, then
you would get 20% in the course.

This can’t be a false statement, because if it were false, then
you would get 10% in the class, which would make the
statement true.

This is a contradiction.

Notice again how we are feeding the problem back into itself.
Our statement references the problem itself. Terrence Tao
describes this as the “no self-defeating object” argument.
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Halting Problem

Two functions:

def f(): def g():

i = 0 i = 0

while i < 10: while i < 10:

i = i + 1 i = i - 1

Question: Do they eventually stop running (halt) or do they
run forever?

Halting problem: Can we create a program that takes any
function as an input and outputs whether or not that function
eventually stops running?

This is asking for too much. The existence of such a program
would create a paradoxical situation.
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Halting problem, continued

To see why, suppose H is such a function. (It takes as an input
a function f and tells whether or not f halts.)

Now create the following function:

def h():

if H(h) == True:

while True: pass #infinite loop

What is the result of H(h)?

If it says that h eventually halts, then the if statement would
catch, and h would run forever.

If it says that h runs forever, the if statement would not catch,
and h would halt.

A contradiction.
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Halting problem, continued

The Halting problem is one of the most famous problems in
computer science, showing there are definite limits on what
can be computed.

But it is a little abstract. Let’s look at something more
concrete.
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The Post correspondence problem

We are given the following two families of strings of 0s and 1s.
A B

1. 10 1
2. 010 01
3. 01 001

Take a sequence of numbers, like (2, 2, 1), and add strings 2,
2, and 1 together strings from each family:

Family A: 01+ 010+ 10= 0101010
Family B: 001+ 01+ 1= 001011

Are these equal? No.

Can we find a sequence where things do work out to be equal?

Yes. One example is (2, 3), which produces 01001 from both
families.
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The Post correspondence problem

Here is another set of two families:
A B

1. 0 1
2. 00 11
3. 000 111

Clearly there is no nonempty sequence that could possibly
work where the strings from A could match the strings from B.

The Post correspondence problem asks for an algorithm that is
given two families and tells whether a sequence exists or not
that produces equal strings from both families.

I feel like I could program a solution. But this is asking for too
much. One can prove that no such algorithm can exist.

The proof works by constructing families of strings such that a
solution to that family would give a solution to the Halting
problem. The details are a little tricky.
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Axioms in mathematics

Mathematicians like to work by coming up with a set of
axioms and then proving things from them.

Axioms are things that are taken for granted. They should be
simple and there shouldn’t be very many of them.

In the early 1900s, there was a push to find a set of axioms
from which all of mathematics could be derived.

Prominent mathematicians worked on this for years. The
most famous attempt was Bertrand Russell’s and Alfred North
Whitehead’s Principia Mathematica.
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An example set of axioms

Here are the famous Peano Axioms defining the natural numbers
{1, 2,3, . . . }:

1 1 is a natural number.
2 Whenever n is a natural number, the successor of n is also a

natural number
3 1 is not the successor of any natural number.
4 If the successors of n and m are equal, then n=m.
5 If S is a set that contains 1 and the successor of anything in S

is also in S, then S contains every natural number.

From these we can derive all the familiar properties of natural
numbers, such as 1+ 1= 2. We can build on this to derive other
sets of numbers like all integers, rationals, and reals.
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Incompleteness theorems

We want our set of axioms to be consistent. In an inconsistent
system of axioms, it would be possible to prove both a
statement and its negation.

Mathematicians of the early 1900s wanted their axioms to be
complete — that is, any true mathematical statement could be
proved using the axioms and logic.

But in the early 1930s, Kurt Gödel proved that we can’t have
both. Roughly, any nontrivial set of axioms about arithmetic is
either inconsistent or incomplete.

This is known as Gödel’s First incompleteness theorem.

The proof of the theorem is tricky, but it relies on the same
self-referential idea from the earlier logical paradoxes.
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Incompleteness theorems, continued

Consequence of the theorem: Given any nontrivial set of
consistent axioms about real arithmetic, there will always be
statements that are true but can’t be proved.

Some people find this profoundly disappointing.

I find it profoundly interesting — we can’t reduce math to a
mechanical system of rules. There is always something new
out there.

People wonder if certain famous unsolved problems in
number theory, like the twin primes conjecture or Goldbach’s
conjecture, might actually be true statements that can’t be
proved using the standard axioms of mathematics.
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This talk is incomplete

I’ve tried to cram far too much material into 30 minutes. Time to
stop.

Thanks for your attention!
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