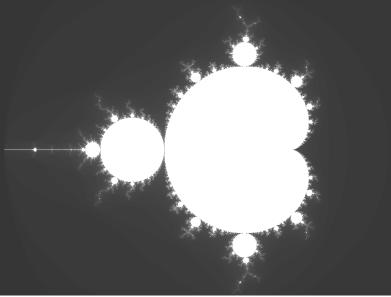
The Mandelbrot Set Brian Heinold

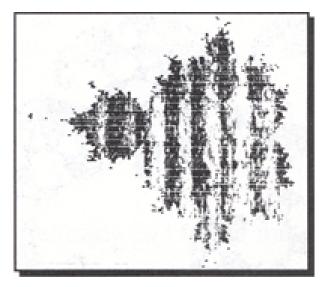
The Mandelbrot set



Benoit Mandelbrot

Discovered by Benoit Mandelbrot (1924-2010) in the 1970s while working at IBM.

Mandelbrot's original image



. . .

Example: Let $f(x) = x^2$ and start with x = 2.

f(2) = 4f(4) = 16f(16) = 256f(256) = 65536

Iterates are approaching ∞ .

A different starting point

Let
$$f(x) = x^2$$
 and start with $x = \frac{1}{2}$.

 $f(\frac{1}{2}) = \frac{1}{4}$ $f(\frac{1}{4}) = \frac{1}{16}$ $f(\frac{1}{16}) = \frac{1}{256}$ $f(\frac{1}{256}) = \frac{1}{65536}$

. . .

Iterates are approaching 0.

Let
$$f(x) = -x$$
 and start with $x = 1$.

f(1) = -1f(-1) = 1f(1) = -1f(-1) = 1

. . .

Iterates are not settling down on a value.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ● のへの

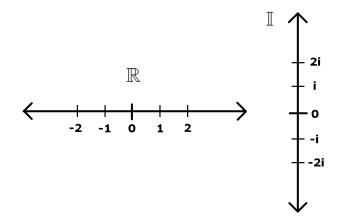
Color each point according to how fast it converges.

Color each point according to how fast it converges.

Interesting, but boring. We need to move to two dimensions!

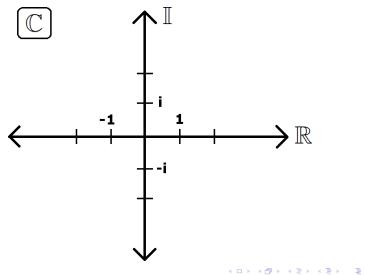
Complex numbers

 $i = \sqrt{-1}$ Complex numbers: 7*i*, 2 + 3*i*, 3.4 - 1.64*i*, ...



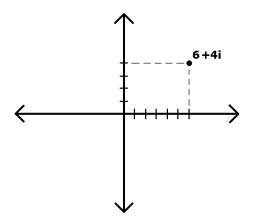
Picturing complex numbers

Put the reals and imaginaries together to get $\mathbb{C},$ the complex numbers.



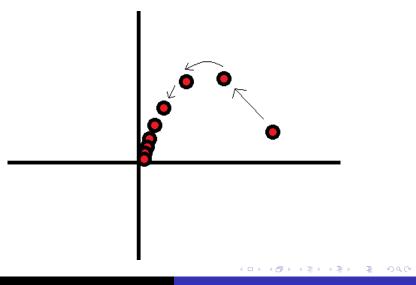
Picturing complex numbers

Every complex number is a combination of a real part and an imaginary part.



Iteration with complex numbers

Plug z = x + iy into f(z). Get a value, and plug that value into the function. Then plug the result of that into the function, etc.



Example of iteration with complex numbers

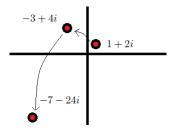
Consider
$$f(z) = z^2$$
 with $z = 1 + 2i$:
 $f(1+2i) = (1+2i)(1+2i) = -3 + 4i$
 $f(-3+4i) = (-3+4i)(-3+4i) = -7 - 24i$
 $f(-7-24i) = (-7-24i)(-7-24i) = -527 + 336i$

Iterates are pretty clearly heading off to ∞ .

Example of iteration with complex numbers

Consider
$$f(z) = z^2$$
 with $z = 1 + 2i$:
 $f(1+2i) = (1+2i)(1+2i) = -3 + 4i$
 $f(-3+4i) = (-3+4i)(-3+4i) = -7 - 24i$
 $f(-7-24i) = (-7-24i)(-7-24i) = -527 + 336i$

Iterates are pretty clearly heading off to ∞ .

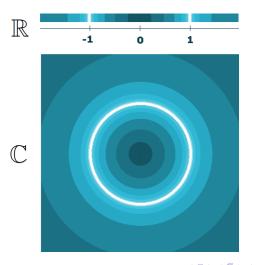


Iteration with complex numbers

Color points according to how fast they converge under $f(x) = x^2$ and $f(z) = z^2$.

Iteration with complex numbers

Color points according to how fast they converge under $f(x) = x^2$ and $f(z) = z^2$.

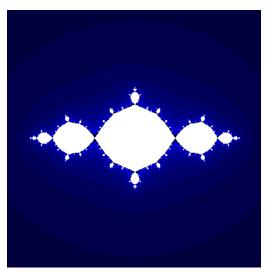


A small change

A funny thing happens if we change to $f(z) = z^2 - 1$:

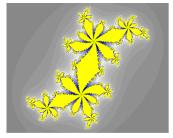
A small change

A funny thing happens if we change to $f(z) = z^2 - 1$:

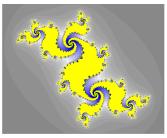


▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 夏 - のへで

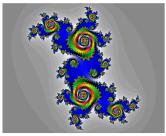
Iterating $z^2 + c$ for various values of c



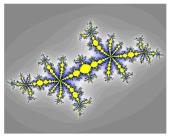
.12-.62i



-.06+.68i



.27+.49i



-.65-.44i

• The sets we get are examples of *Julia sets*.

- The sets we get are examples of *Julia sets*.
- Specifically, the Julia set of $f(z) = z^2 + c$ is the boundary of the set of points that go off to infinity when iterated.

- The sets we get are examples of *Julia sets*.
- Specifically, the Julia set of $f(z) = z^2 + c$ is the boundary of the set of points that go off to infinity when iterated.
- Is there a way we can tell what type of Julia set we will get for $f(z) = z^2 + c$, just by looking at what happens to a single starting point when iterated?

- The sets we get are examples of *Julia sets*.
- Specifically, the Julia set of $f(z) = z^2 + c$ is the boundary of the set of points that go off to infinity when iterated.
- Is there a way we can tell what type of Julia set we will get for $f(z) = z^2 + c$, just by looking at what happens to a single starting point when iterated?
- Yes. What happens to 0 determines a lot about what the Julia set looks like.

- The sets we get are examples of *Julia sets*.
- Specifically, the Julia set of $f(z) = z^2 + c$ is the boundary of the set of points that go off to infinity when iterated.
- Is there a way we can tell what type of Julia set we will get for $f(z) = z^2 + c$, just by looking at what happens to a single starting point when iterated?
- Yes. What happens to 0 determines a lot about what the Julia set looks like.
- If we do this for lots of c values, and plot just what happens to 0, we get the Mandelbrot set.

Plotting the Mandelbrot set

It is usually plotted as follows:

• For all the c values in a certain range, iterate $f(z) = z^2 + c$ starting with z = 0.

Plotting the Mandelbrot set

It is usually plotted as follows:

- For all the c values in a certain range, iterate $f(z) = z^2 + c$ starting with z = 0.
- If the iterates ever get larger than 2 in absolute value, then we are guaranteed that they will go to infinity.

It is usually plotted as follows:

- For all the c values in a certain range, iterate $f(z) = z^2 + c$ starting with z = 0.
- If the iterates ever get larger than 2 in absolute value, then we are guaranteed that they will go to infinity.
- If this happens, we color the point according to how many iterations it took to get there.

It is usually plotted as follows:

- For all the c values in a certain range, iterate $f(z) = z^2 + c$ starting with z = 0.
- If the iterates ever get larger than 2 in absolute value, then we are guaranteed that they will go to infinity.
- If this happens, we color the point according to how many iterations it took to get there.
- Otherwise, color the point yellow (or white or whatever just be consistent)

Time for some programs...

Thank you for your attention.

• First Mandelbrot set http://paulscottinfo.ipage.com/art-of-maths/4mandelbrot.html

• • = • • = •

 Mandelbrot himself http://www.rugusavay.com/benoit-mandelbrot-photos/