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A Question

Solve x2 + 7x + 1 = 0.

Answer? Use the quadratic formula:

−b±
√
b2 − 4ac

2a
=
−7±

√
72 − 4

2

Simplifies to 1
2(−7 +

√
45) and 1

2(−7−
√

45)
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Let’s Check Our Work. . .
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A Harder Question

Solve x5 + 7x + 1 = 0.

Answer? Hmmm...
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Let’s Try Wolfram. . .
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Look Carefully

Why = in the first and ≈ in the second?
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Solving Equations

Quadratic equations — solved via quadratic formula or
algebra

Fifth-order equations — there’s no formula and no algebra
that works

Another equation that can’t be solved analytically:
cosx = x

High school math’s dirty little secret: Many (if not most)
equations from real applications can’t be solved by the
techniques you learn

And this includes integrals and differential equations
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Solving Equations Numerically

So what do we do?

Use a numerical method to get an approximate solution.

What?

It’s a series of steps to follow. Each step hopefully gets us a
little closer to the exact answer.

Newton’s Method is one such numerical method.

17 / 82



Solving Equations Numerically

So what do we do?

Use a numerical method to get an approximate solution.

What?

It’s a series of steps to follow. Each step hopefully gets us a
little closer to the exact answer.

Newton’s Method is one such numerical method.

18 / 82



Solving Equations Numerically

So what do we do?

Use a numerical method to get an approximate solution.

What?

It’s a series of steps to follow. Each step hopefully gets us a
little closer to the exact answer.

Newton’s Method is one such numerical method.

19 / 82



Solving Equations Numerically

So what do we do?

Use a numerical method to get an approximate solution.

What?

It’s a series of steps to follow. Each step hopefully gets us a
little closer to the exact answer.

Newton’s Method is one such numerical method.

20 / 82



Solving Equations Numerically

So what do we do?

Use a numerical method to get an approximate solution.

What?

It’s a series of steps to follow. Each step hopefully gets us a
little closer to the exact answer.

Newton’s Method is one such numerical method.

21 / 82



Solving Equations

Solving an equation like x5 + 7x+ 1 = 0 is looking for where the
graph crosses the x-axis.
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Newton’s Method

We start by making a guess at what the solution is.

The closer our guess is to a solution, the better.

Then follow the following sequence of steps.
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Step 1
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Step 2
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Step 3
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Step 4
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Step 5
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Steps 6, 7. . .

Repeat these steps a few more times.
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The Overall Process

1 Make an initial guess

2 Keep repeating the following until we get tired:
1 Go to the function
2 Follow the tangent line to the axis
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Algebraic Version

Instead of graphically, we do things symbolically.

Following the tangent line means using the derivative. A little
algebra tells us where the tangent line meets the axis:

improved guess = old guess− f(old guess)

f ′(old guess)

Or, in more common notation:

xn+1 = xn −
f(xn)

f ′(xn)
x0 = initial guess

34 / 82



Algebraic Version

Instead of graphically, we do things symbolically.

Following the tangent line means using the derivative. A little
algebra tells us where the tangent line meets the axis:

improved guess = old guess− f(old guess)

f ′(old guess)

Or, in more common notation:

xn+1 = xn −
f(xn)

f ′(xn)
x0 = initial guess

35 / 82



Algebraic Version

Instead of graphically, we do things symbolically.

Following the tangent line means using the derivative. A little
algebra tells us where the tangent line meets the axis:

improved guess = old guess− f(old guess)

f ′(old guess)

Or, in more common notation:

xn+1 = xn −
f(xn)

f ′(xn)
x0 = initial guess

36 / 82



Algebraic Version

Instead of graphically, we do things symbolically.

Following the tangent line means using the derivative. A little
algebra tells us where the tangent line meets the axis:

improved guess = old guess− f(old guess)

f ′(old guess)

Or, in more common notation:

xn+1 = xn −
f(xn)

f ′(xn)
x0 = initial guess

37 / 82



Example

f(x) = x5 + 7x + 1

Let’s use x = 1 as our initial guess.

Iterating = x− x5 + 7x + 1

5x4 + 7
:

x0 = 1

x1 = 1−
15 + 7 · 1 + 1

5 · 14 + 7
= .25

x2 = .25−
.255 + 7 · .25 + 1

5 · .254 + 7
= −0.1419 . . .

x3 = −.1419 · · · −
(−0.1419 . . . )5 + 7 · (−0.1419 . . . ) + 1

5 · (−0.1419 . . . )4 + 7
= −0.1428 . . .
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Look familiar?
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Chaos Appears!

Try Newton’s method on 3

√
3−4x
x = 0.

The iterating formula simplifies to 4x(1− x).

The first 36 values, using a starting value of .4:
.960, .154, .520, .998, .006, .025, .099, .358, .919, .298, .837, .547,

.991, .035, .135, .466, .995, .018, .071, .263, .774, .699, .842, .532,

.996, .016, .064, .241, .732, .785, .676, .876, .434, .983, .068, .252,

.754, .742, .765, .719, .808, .620, .942, .219, .683, .866, .464, .995

Looks pretty random. . .
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Even Stranger. . .

Iterations for two very close starting values:

.400 .401

.960 .960

.154 .151

.520 .512

.998 .999

.006 .002

.025 .009

.099 .036

.358 .137

.919 .474

.400000 .400001

.960 .960

.154 .154

.520 .520

.998 .998

.006 .006

.025 .025

.099 .099

.358 .357

.919 .919

.298 .299

.837 .838

.547 .543

.991 .993

.035 .029

.135 .113

.466 .400

.995 .960

.018 .153

.071 .519
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Chaos

This is an example of chaos.

Irregular, but not totally random

Sensitive dependence on initial conditions

Even if our starting values were vanishingly close, say only
10−20 apart, it would only take several dozen iterations for
them to start to diverge.
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The Double Pendulum: Another Chaotic System

A double pendulum is a pendulum attached to another
pendulum.

55 / 82



The Double Pendulum: Another Chaotic System

A double pendulum is a pendulum attached to another
pendulum.

If we change the starting angle by something as small as just
the width of an atom (like a .0000000001 difference), after 30-60
seconds the pendulum will be doing something completely
different.
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Another Chaotic System: The Magnetic Pendulum

No matter how hard you try to start it in the same location,
each time you release it, after a few seconds, it will be doing
something different.
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Another Chaotic System: Plinko
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Another Chaotic System: The Weather

The Butterfly Effect — A butterfly flapping its wings in
Japan can mean the difference between a tornado and a
sunny day six months later in Texas

Weather is a chaotic system; this is why we can’t predict
the weather more than a few days out.
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Another Chaotic System: Life

Before leaving for school, I stop to look at myself in the
mirror for a few seconds. When I get to the intersection at
the road, there is now a car coming that I wouldn’t have
met. While waiting, I see a quarter next to my bike and
pick it up. If I hadn’t picked it up, a few days later someone
walking by would have thrown out their back while trying to
pick it up. Later that day at the doctor’s office that person
met someone else. She was moving to Houston the next day,
but she and the guy that threw out his back have a good
conversation and decide to stay in touch. Later they start
dating, get married. That marriage would not have
happened if I hadn’t stopped to look in the mirror.
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Some Good Books on Chaos

Chaos: Making a New Science, James Gleick, 1987.

Does God Play Dice? Ian Stewart, 1989.
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Imaginary Numbers

Solutions of x3 − 1 = 0?

x = 1 is one, but there are two others: x = −1
2 ±

3
2 i
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Newton’s Method Works with Imaginary Numbers
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Trying different starting values

Let’s see how different starting values behave.

Some will go to one root, some to other.

The closer they are to a root, the more quickly they will
get there.

Try each starting value in the range from say -2 to 2 in the
real and imaginary directions.

Color each one based on how long it takes until it is within
.00001 of a root.
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This Is What We Get
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A Zoomed-In Version
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Example Orbits of Iterations
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Example Orbits of Iterations
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Newton’s Method on z9 − 1 = 0 (Roughly)
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Newton’s Method on zc − 1 = 0 (c is imaginary)
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Newton’s Method on zc − 1 = 0 (c is imaginary)
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Netwon’s Method on z−4.7+.3i + z − 1
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Good Book on Fractals

Chaos and Fractals: New Frontiers of Science, 2nd ed.,
Heinz-Otto Peitgen, Hartmut Jürgens, & Dietmar Saupe, 2004
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Thanks for your attention!
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