
Smalltalk 11/24/14

The Hardest Problem
Brian Heinold

Efficiency

Computer scientists (and mathematicians) are interested in
how fast an algorithm runs.

Example: Solve ax + b = c.

Algorithm for solution: subtract b from both sides, then
divide by a.

This is fast. This takes about the same amount of time for
all reasonably-sized values of a, b, c.

We call this a constant-time algorithm (O(1)).

Efficiency

Computer scientists (and mathematicians) are interested in
how fast an algorithm runs.

Example: Solve ax + b = c.

Algorithm for solution: subtract b from both sides, then
divide by a.

This is fast. This takes about the same amount of time for
all reasonably-sized values of a, b, c.

We call this a constant-time algorithm (O(1)).

Efficiency

Computer scientists (and mathematicians) are interested in
how fast an algorithm runs.

Example: Solve ax + b = c.

Algorithm for solution: subtract b from both sides, then
divide by a.

This is fast. This takes about the same amount of time for
all reasonably-sized values of a, b, c.

We call this a constant-time algorithm (O(1)).

Efficiency

Computer scientists (and mathematicians) are interested in
how fast an algorithm runs.

Example: Solve ax + b = c.

Algorithm for solution: subtract b from both sides, then
divide by a.

This is fast. This takes about the same amount of time for
all reasonably-sized values of a, b, c.

We call this a constant-time algorithm (O(1)).

Efficiency

Computer scientists (and mathematicians) are interested in
how fast an algorithm runs.

Example: Solve ax + b = c.

Algorithm for solution: subtract b from both sides, then
divide by a.

This is fast. This takes about the same amount of time for
all reasonably-sized values of a, b, c.

We call this a constant-time algorithm (O(1)).

A linear algorithm

Example: Add up all the elements in a list.

total = 0

for i in range(len(L)):

total = total + L[i]

If n items in list, need to look at all of them.

This is a linear (O(n)) algorithm.

Note: Actual running time might be something like
14.7n + .0025, but we don’t care about the constants, just
the order of growth.

A linear algorithm

Example: Add up all the elements in a list.

total = 0

for i in range(len(L)):

total = total + L[i]

If n items in list, need to look at all of them.

This is a linear (O(n)) algorithm.

Note: Actual running time might be something like
14.7n + .0025, but we don’t care about the constants, just
the order of growth.

A linear algorithm

Example: Add up all the elements in a list.

total = 0

for i in range(len(L)):

total = total + L[i]

If n items in list, need to look at all of them.

This is a linear (O(n)) algorithm.

Note: Actual running time might be something like
14.7n + .0025, but we don’t care about the constants, just
the order of growth.

A linear algorithm

Example: Add up all the elements in a list.

total = 0

for i in range(len(L)):

total = total + L[i]

If n items in list, need to look at all of them.

This is a linear (O(n)) algorithm.

Note: Actual running time might be something like
14.7n + .0025, but we don’t care about the constants, just
the order of growth.

A quadratic algorithm

Example: Add up all the elements in an n× n array.

2 3 5 8 3
1 0 4 8 0
6 6 3 9 1
8 4 3 7 4
3 1 5 8 5

for i in range(len(L)):

for j in range(len(L[i])):

total = total + L[i][j]

This is a quadratic (O(n2)) algorithm.

A quadratic algorithm

Example: Add up all the elements in an n× n array.

2 3 5 8 3
1 0 4 8 0
6 6 3 9 1
8 4 3 7 4
3 1 5 8 5

for i in range(len(L)):

for j in range(len(L[i])):

total = total + L[i][j]

This is a quadratic (O(n2)) algorithm.

Long division

The familiar process from grade school:

Just keep repeating the process of dividing, subtracting,
and bringing down the next digit.

When dividing into an n-digit number, this takes n steps.

So this is a linear (O(n)) algorithm.

Adding another digit to the number just adds a little more
time.

Long division

The familiar process from grade school:

Just keep repeating the process of dividing, subtracting,
and bringing down the next digit.

When dividing into an n-digit number, this takes n steps.

So this is a linear (O(n)) algorithm.

Adding another digit to the number just adds a little more
time.

Long division

The familiar process from grade school:

Just keep repeating the process of dividing, subtracting,
and bringing down the next digit.

When dividing into an n-digit number, this takes n steps.

So this is a linear (O(n)) algorithm.

Adding another digit to the number just adds a little more
time.

Long division

The familiar process from grade school:

Just keep repeating the process of dividing, subtracting,
and bringing down the next digit.

When dividing into an n-digit number, this takes n steps.

So this is a linear (O(n)) algorithm.

Adding another digit to the number just adds a little more
time.

Polynomial time

Polynomials: 1, n, n2, n3 + 3n2 + n + 1

If an algorithm’s running time is a polynomial, we say it
runs in polynomial time.

Common tasks that take polynomial time:

Grade school arithmetic
Most simple programming tasks
Sorting a list: O(n2) or better
Solving a system of n equations: O(n3)

Polynomial time

Polynomials: 1, n, n2, n3 + 3n2 + n + 1

If an algorithm’s running time is a polynomial, we say it
runs in polynomial time.

Common tasks that take polynomial time:

Grade school arithmetic
Most simple programming tasks
Sorting a list: O(n2) or better
Solving a system of n equations: O(n3)

Polynomial time

Polynomials: 1, n, n2, n3 + 3n2 + n + 1

If an algorithm’s running time is a polynomial, we say it
runs in polynomial time.

Common tasks that take polynomial time:

Grade school arithmetic

Most simple programming tasks
Sorting a list: O(n2) or better
Solving a system of n equations: O(n3)

Polynomial time

Polynomials: 1, n, n2, n3 + 3n2 + n + 1

If an algorithm’s running time is a polynomial, we say it
runs in polynomial time.

Common tasks that take polynomial time:

Grade school arithmetic
Most simple programming tasks

Sorting a list: O(n2) or better
Solving a system of n equations: O(n3)

Polynomial time

Polynomials: 1, n, n2, n3 + 3n2 + n + 1

If an algorithm’s running time is a polynomial, we say it
runs in polynomial time.

Common tasks that take polynomial time:

Grade school arithmetic
Most simple programming tasks
Sorting a list: O(n2) or better

Solving a system of n equations: O(n3)

Polynomial time

Polynomials: 1, n, n2, n3 + 3n2 + n + 1

If an algorithm’s running time is a polynomial, we say it
runs in polynomial time.

Common tasks that take polynomial time:

Grade school arithmetic
Most simple programming tasks
Sorting a list: O(n2) or better
Solving a system of n equations: O(n3)

A question

Are all problems solvable in polynomial time?

No.

For example, find all the subsets of {1, 2, 3, . . . , n}.
There are lots: {1, 2, 3}, {4, 5}, {7, 15, 27, 48, 76}, . . .

There are 2n subsets in total, so no algorithm can do better
than O(2n) time.

This is called exponential time.

Adding another element doubles the amount of time.

A question

Are all problems solvable in polynomial time?

No.

For example, find all the subsets of {1, 2, 3, . . . , n}.
There are lots: {1, 2, 3}, {4, 5}, {7, 15, 27, 48, 76}, . . .

There are 2n subsets in total, so no algorithm can do better
than O(2n) time.

This is called exponential time.

Adding another element doubles the amount of time.

A question

Are all problems solvable in polynomial time?

No.

For example, find all the subsets of {1, 2, 3, . . . , n}.

There are lots: {1, 2, 3}, {4, 5}, {7, 15, 27, 48, 76}, . . .

There are 2n subsets in total, so no algorithm can do better
than O(2n) time.

This is called exponential time.

Adding another element doubles the amount of time.

A question

Are all problems solvable in polynomial time?

No.

For example, find all the subsets of {1, 2, 3, . . . , n}.
There are lots: {1, 2, 3}, {4, 5}, {7, 15, 27, 48, 76}, . . .

There are 2n subsets in total, so no algorithm can do better
than O(2n) time.

This is called exponential time.

Adding another element doubles the amount of time.

A question

Are all problems solvable in polynomial time?

No.

For example, find all the subsets of {1, 2, 3, . . . , n}.
There are lots: {1, 2, 3}, {4, 5}, {7, 15, 27, 48, 76}, . . .

There are 2n subsets in total, so no algorithm can do better
than O(2n) time.

This is called exponential time.

Adding another element doubles the amount of time.

A question

Are all problems solvable in polynomial time?

No.

For example, find all the subsets of {1, 2, 3, . . . , n}.
There are lots: {1, 2, 3}, {4, 5}, {7, 15, 27, 48, 76}, . . .

There are 2n subsets in total, so no algorithm can do better
than O(2n) time.

This is called exponential time.

Adding another element doubles the amount of time.

A question

Are all problems solvable in polynomial time?

No.

For example, find all the subsets of {1, 2, 3, . . . , n}.
There are lots: {1, 2, 3}, {4, 5}, {7, 15, 27, 48, 76}, . . .

There are 2n subsets in total, so no algorithm can do better
than O(2n) time.

This is called exponential time.

Adding another element doubles the amount of time.

Difference between polynomial and exponentials

Difference between n2 and 2n:

102 = 100
210 = 1024

1002 = 10,000
2100 = 1.27× 1030

10002 = 1,000,000
21000 = 1.07× 10301

Sum the elements in a 1000× 1000 array? No problem.

List all the subsets of {1, 2, . . . , 1000}? No chance.

Difference between polynomial and exponentials

Difference between n2 and 2n:

102 = 100
210 = 1024

1002 = 10,000
2100 = 1.27× 1030

10002 = 1,000,000
21000 = 1.07× 10301

Sum the elements in a 1000× 1000 array? No problem.

List all the subsets of {1, 2, . . . , 1000}? No chance.

Difference between polynomial and exponentials

Difference between n2 and 2n:

102 = 100
210 = 1024

1002 = 10,000
2100 = 1.27× 1030

10002 = 1,000,000
21000 = 1.07× 10301

Sum the elements in a 1000× 1000 array? No problem.

List all the subsets of {1, 2, . . . , 1000}? No chance.

Difference between polynomial and exponentials

Difference between n2 and 2n:

102 = 100
210 = 1024

1002 = 10,000
2100 = 1.27× 1030

10002 = 1,000,000
21000 = 1.07× 10301

Sum the elements in a 1000× 1000 array? No problem.

List all the subsets of {1, 2, . . . , 1000}? No chance.

Difference between polynomial and exponentials

Difference between n2 and 2n:

102 = 100
210 = 1024

1002 = 10,000
2100 = 1.27× 1030

10002 = 1,000,000
21000 = 1.07× 10301

Sum the elements in a 1000× 1000 array? No problem.

List all the subsets of {1, 2, . . . , 1000}? No chance.

Difference between polynomial and exponentials

Linear algorithm: if you double the problem size, you
double the running time

Quadratic: if you double the problem size, you quadruple
the running time

Exponential: if you add 1 to problem size, you double
running the time

Difference between polynomial and exponentials

Linear algorithm: if you double the problem size, you
double the running time

Quadratic: if you double the problem size, you quadruple
the running time

Exponential: if you add 1 to problem size, you double
running the time

Difference between polynomial and exponentials

Linear algorithm: if you double the problem size, you
double the running time

Quadratic: if you double the problem size, you quadruple
the running time

Exponential: if you add 1 to problem size, you double
running the time

Sudoku

It’s not easy to solve a Sudoku puzzle.

From http://en.wikipedia.org/wiki/Sudoku

Sudoku

But it is easy to check a solution.

From http://en.wikipedia.org/wiki/Sudoku

Subset sum

Given a set of integers, is it possible to find a subset of them
summing to exactly 0?

{−20,−12,−10,−7,−3, 4, 5, 9, 18, 25}

Not too easy. . .

Subset sum

Given a set of integers, is it possible to find a subset of them
summing to exactly 0?

{−20,−12,−10,−7,−3, 4, 5, 9, 18, 25}

But it is easy to verify that {−12,−10,−3, 25} works.

If the the set were 1000 elements long, it could be very difficult
to find a solution, but still easy to check a solution (just add up
1000 numbers).

Subset sum

Given a set of integers, is it possible to find a subset of them
summing to exactly 0?

{−20,−12,−10,−7,−3, 4, 5, 9, 18, 25}

But it is easy to verify that {−12,−10,−3, 25} works.

If the the set were 1000 elements long, it could be very difficult
to find a solution, but still easy to check a solution (just add up
1000 numbers).

Graph coloring

Assign labels so that adjacent vertices get different labels.

Graph coloring

Assign labels so that adjacent vertices get different labels.

Can we color this graph with 5 colors?

Can be tricky to find a solution.

Can we color this graph with 5 colors?

But it’s easy to check that a given solution works.

P and NP

P = class of problems solvable in polynomial time

NP = class of problems where we can verify a solution in
polynomial time

The big problem: Does P = NP?

In other words, if we can efficiently check if a solution is
correct, does that mean we can efficiently solve the
problem?

P and NP

P = class of problems solvable in polynomial time

NP = class of problems where we can verify a solution in
polynomial time

The big problem: Does P = NP?

In other words, if we can efficiently check if a solution is
correct, does that mean we can efficiently solve the
problem?

P and NP

P = class of problems solvable in polynomial time

NP = class of problems where we can verify a solution in
polynomial time

The big problem: Does P = NP?

In other words, if we can efficiently check if a solution is
correct, does that mean we can efficiently solve the
problem?

NP-Completeness

There is a whole collection of problems, considered to be
the hardest ones in NP.

These are called NP-Complete problems.

They are of enormous practical interest.

Here are a few. . .

NP-Completeness

There is a whole collection of problems, considered to be
the hardest ones in NP.

These are called NP-Complete problems.

They are of enormous practical interest.

Here are a few. . .

NP-Completeness

There is a whole collection of problems, considered to be
the hardest ones in NP.

These are called NP-Complete problems.

They are of enormous practical interest.

Here are a few. . .

NP-Completeness

There is a whole collection of problems, considered to be
the hardest ones in NP.

These are called NP-Complete problems.

They are of enormous practical interest.

Here are a few. . .

n× n Sudoku

Subset sum

Given a set of integers, is it possible to find a subset of them
summing to exactly 0?

{−20,−12,−10,−7,−3, 4, 5, 9, 18, 25}

Graph Coloring

The traveling salesman problem

Salesman needs to visit all 6 cities, needs to do so as
cheaply as possible.

There are 6! = 720 possible routes.

For n cities, to checking all possibilities is an O(n!).

Can be solved in exponential time, but no one knows if it
can be solved in polynomial time.

The traveling salesman problem

Salesman needs to visit all 6 cities, needs to do so as
cheaply as possible.

There are 6! = 720 possible routes.

For n cities, to checking all possibilities is an O(n!).

Can be solved in exponential time, but no one knows if it
can be solved in polynomial time.

The traveling salesman problem

Salesman needs to visit all 6 cities, needs to do so as
cheaply as possible.

There are 6! = 720 possible routes.

For n cities, to checking all possibilities is an O(n!).

Can be solved in exponential time, but no one knows if it
can be solved in polynomial time.

The traveling salesman problem

Salesman needs to visit all 6 cities, needs to do so as
cheaply as possible.

There are 6! = 720 possible routes.

For n cities, to checking all possibilities is an O(n!).

Can be solved in exponential time, but no one knows if it
can be solved in polynomial time.

Hamiltonian cycle

Is it possible to visit each vertex exactly once and end up where
you started?

Independent set

An independent set is a collection of vertices, none of which are
adjacent to each other. Does there exist an independent set of a
given size?

Some more problems

Reconstructing a DNA sequence from fragments

Ground state in the Ising model of phase transitions

Finding Nash Equilbriums

Optimal protein threading

Scheduling jobs on two identical machines to finish in a
given time

Given costs, returns, and risks for a series of investments,
find a strategy to minimize risk

More about NP Completeness

There are more than 1000 known NP-complete problems.

They all share the property that it is easy to verify a
solution.

But they are all hard to solve.

Each problem in the collection reduces to the others.

That is, a solution to any one could be used to quickly find
a solution to any other one.

Finding a fast (polynomial-time) solution to any one of
these would give a fast solution to all the others.

More about NP Completeness

There are more than 1000 known NP-complete problems.

They all share the property that it is easy to verify a
solution.

But they are all hard to solve.

Each problem in the collection reduces to the others.

That is, a solution to any one could be used to quickly find
a solution to any other one.

Finding a fast (polynomial-time) solution to any one of
these would give a fast solution to all the others.

More about NP Completeness

There are more than 1000 known NP-complete problems.

They all share the property that it is easy to verify a
solution.

But they are all hard to solve.

Each problem in the collection reduces to the others.

That is, a solution to any one could be used to quickly find
a solution to any other one.

Finding a fast (polynomial-time) solution to any one of
these would give a fast solution to all the others.

More about NP Completeness

There are more than 1000 known NP-complete problems.

They all share the property that it is easy to verify a
solution.

But they are all hard to solve.

Each problem in the collection reduces to the others.

That is, a solution to any one could be used to quickly find
a solution to any other one.

Finding a fast (polynomial-time) solution to any one of
these would give a fast solution to all the others.

More about NP Completeness

There are more than 1000 known NP-complete problems.

They all share the property that it is easy to verify a
solution.

But they are all hard to solve.

Each problem in the collection reduces to the others.

That is, a solution to any one could be used to quickly find
a solution to any other one.

Finding a fast (polynomial-time) solution to any one of
these would give a fast solution to all the others.

More about NP Completeness

There are more than 1000 known NP-complete problems.

They all share the property that it is easy to verify a
solution.

But they are all hard to solve.

Each problem in the collection reduces to the others.

That is, a solution to any one could be used to quickly find
a solution to any other one.

Finding a fast (polynomial-time) solution to any one of
these would give a fast solution to all the others.

Easy vs. Hard Problems

It’s hard to predict the difficulty of a problem. Examples:

Easy: Round trip in a graph, visiting every edge exactly once.

Hard: Round trip in a graph, visiting every vertex exactly once.

Easy: Finding the shortest path between two given vertices.

Hard: Finding the longest path between two given vertices.

Easy: Match up people into compatible teams of 2.

Hard: Match up people into compatible teams of 3.

Easy: R solutions to systems of linear inequalities.

Hard: Integer solutions to systems of linear inequalities.

Easy vs. Hard Problems

It’s hard to predict the difficulty of a problem. Examples:

Easy: Round trip in a graph, visiting every edge exactly once.

Hard: Round trip in a graph, visiting every vertex exactly once.

Easy: Finding the shortest path between two given vertices.

Hard: Finding the longest path between two given vertices.

Easy: Match up people into compatible teams of 2.

Hard: Match up people into compatible teams of 3.

Easy: R solutions to systems of linear inequalities.

Hard: Integer solutions to systems of linear inequalities.

Easy vs. Hard Problems

It’s hard to predict the difficulty of a problem. Examples:

Easy: Round trip in a graph, visiting every edge exactly once.

Hard: Round trip in a graph, visiting every vertex exactly once.

Easy: Finding the shortest path between two given vertices.

Hard: Finding the longest path between two given vertices.

Easy: Match up people into compatible teams of 2.

Hard: Match up people into compatible teams of 3.

Easy: R solutions to systems of linear inequalities.

Hard: Integer solutions to systems of linear inequalities.

Easy vs. Hard Problems

It’s hard to predict the difficulty of a problem. Examples:

Easy: Round trip in a graph, visiting every edge exactly once.

Hard: Round trip in a graph, visiting every vertex exactly once.

Easy: Finding the shortest path between two given vertices.

Hard: Finding the longest path between two given vertices.

Easy: Match up people into compatible teams of 2.

Hard: Match up people into compatible teams of 3.

Easy: R solutions to systems of linear inequalities.

Hard: Integer solutions to systems of linear inequalities.

Easy vs. Hard Problems

It’s hard to predict the difficulty of a problem. Examples:

Easy: Round trip in a graph, visiting every edge exactly once.

Hard: Round trip in a graph, visiting every vertex exactly once.

Easy: Finding the shortest path between two given vertices.

Hard: Finding the longest path between two given vertices.

Easy: Match up people into compatible teams of 2.

Hard: Match up people into compatible teams of 3.

Easy: R solutions to systems of linear inequalities.

Hard: Integer solutions to systems of linear inequalities.

Origin of the name

“NP” does not stand for “not polynomial”.

A Turing Machine is a theoretical model for computing.

It is a (hypothetical) machine that reads a tape and
changes what is written on the tape based on the current
state of the machine.

In theory, anything that can be computed seems to be able
to be computed by a Turing Machine.

A Nondeterministic Turing Machine extends the ordinary
Turing Machine (roughly) by allowing for infinite
parallelism. We can split the computation into infinitely
many parallel components, though the components cannot
communicate with each other.

Problems in NP are those that are computable by a
Nondeterministic Turing Machine in Polynomial Time.

This is actually equivalent to our earlier formulation about
being verifiable in polynomial time.

Origin of the name

“NP” does not stand for “not polynomial”.

A Turing Machine is a theoretical model for computing.

It is a (hypothetical) machine that reads a tape and
changes what is written on the tape based on the current
state of the machine.

In theory, anything that can be computed seems to be able
to be computed by a Turing Machine.

A Nondeterministic Turing Machine extends the ordinary
Turing Machine (roughly) by allowing for infinite
parallelism. We can split the computation into infinitely
many parallel components, though the components cannot
communicate with each other.

Problems in NP are those that are computable by a
Nondeterministic Turing Machine in Polynomial Time.

This is actually equivalent to our earlier formulation about
being verifiable in polynomial time.

Origin of the name

“NP” does not stand for “not polynomial”.

A Turing Machine is a theoretical model for computing.

It is a (hypothetical) machine that reads a tape and
changes what is written on the tape based on the current
state of the machine.

In theory, anything that can be computed seems to be able
to be computed by a Turing Machine.

A Nondeterministic Turing Machine extends the ordinary
Turing Machine (roughly) by allowing for infinite
parallelism. We can split the computation into infinitely
many parallel components, though the components cannot
communicate with each other.

Problems in NP are those that are computable by a
Nondeterministic Turing Machine in Polynomial Time.

This is actually equivalent to our earlier formulation about
being verifiable in polynomial time.

Origin of the name

“NP” does not stand for “not polynomial”.

A Turing Machine is a theoretical model for computing.

It is a (hypothetical) machine that reads a tape and
changes what is written on the tape based on the current
state of the machine.

In theory, anything that can be computed seems to be able
to be computed by a Turing Machine.

A Nondeterministic Turing Machine extends the ordinary
Turing Machine (roughly) by allowing for infinite
parallelism. We can split the computation into infinitely
many parallel components, though the components cannot
communicate with each other.

Problems in NP are those that are computable by a
Nondeterministic Turing Machine in Polynomial Time.

This is actually equivalent to our earlier formulation about
being verifiable in polynomial time.

Origin of the name

“NP” does not stand for “not polynomial”.

A Turing Machine is a theoretical model for computing.

It is a (hypothetical) machine that reads a tape and
changes what is written on the tape based on the current
state of the machine.

In theory, anything that can be computed seems to be able
to be computed by a Turing Machine.

A Nondeterministic Turing Machine extends the ordinary
Turing Machine (roughly) by allowing for infinite
parallelism. We can split the computation into infinitely
many parallel components, though the components cannot
communicate with each other.

Problems in NP are those that are computable by a
Nondeterministic Turing Machine in Polynomial Time.

This is actually equivalent to our earlier formulation about
being verifiable in polynomial time.

Origin of the name

“NP” does not stand for “not polynomial”.

A Turing Machine is a theoretical model for computing.

It is a (hypothetical) machine that reads a tape and
changes what is written on the tape based on the current
state of the machine.

In theory, anything that can be computed seems to be able
to be computed by a Turing Machine.

A Nondeterministic Turing Machine extends the ordinary
Turing Machine (roughly) by allowing for infinite
parallelism. We can split the computation into infinitely
many parallel components, though the components cannot
communicate with each other.

Problems in NP are those that are computable by a
Nondeterministic Turing Machine in Polynomial Time.

This is actually equivalent to our earlier formulation about
being verifiable in polynomial time.

Origin of the name

“NP” does not stand for “not polynomial”.

A Turing Machine is a theoretical model for computing.

It is a (hypothetical) machine that reads a tape and
changes what is written on the tape based on the current
state of the machine.

In theory, anything that can be computed seems to be able
to be computed by a Turing Machine.

A Nondeterministic Turing Machine extends the ordinary
Turing Machine (roughly) by allowing for infinite
parallelism. We can split the computation into infinitely
many parallel components, though the components cannot
communicate with each other.

Problems in NP are those that are computable by a
Nondeterministic Turing Machine in Polynomial Time.

This is actually equivalent to our earlier formulation about
being verifiable in polynomial time.

More about P=NP

First posed in a famous 1956 letter from Kurt Gödel to
John Von Neumann, though it wasn’t phrased in the
modern way until the early 1970s.

Most people think that P 6= NP.

Some people think that the problem may be undecidable.

That is, it may be mathematically impossible to decide the
question one way or the other.

It seems really hard to prove.

More about P=NP

First posed in a famous 1956 letter from Kurt Gödel to
John Von Neumann, though it wasn’t phrased in the
modern way until the early 1970s.

Most people think that P 6= NP.

Some people think that the problem may be undecidable.

That is, it may be mathematically impossible to decide the
question one way or the other.

It seems really hard to prove.

More about P=NP

First posed in a famous 1956 letter from Kurt Gödel to
John Von Neumann, though it wasn’t phrased in the
modern way until the early 1970s.

Most people think that P 6= NP.

Some people think that the problem may be undecidable.

That is, it may be mathematically impossible to decide the
question one way or the other.

It seems really hard to prove.

More about P=NP

First posed in a famous 1956 letter from Kurt Gödel to
John Von Neumann, though it wasn’t phrased in the
modern way until the early 1970s.

Most people think that P 6= NP.

Some people think that the problem may be undecidable.

That is, it may be mathematically impossible to decide the
question one way or the other.

It seems really hard to prove.

More about P=NP

First posed in a famous 1956 letter from Kurt Gödel to
John Von Neumann, though it wasn’t phrased in the
modern way until the early 1970s.

Most people think that P 6= NP.

Some people think that the problem may be undecidable.

That is, it may be mathematically impossible to decide the
question one way or the other.

It seems really hard to prove.

A $1 Million Question

It is one of the Clay Mathematics Institute’s million dollar
problems.

Lance Fortnow:

A person who proves P = NP would walk home from
the Clay Institute not with [a] $1 million check but
with seven.

(Because proving things (like the other six $1 million
problems) would become easy.)

A $1 Million Question

It is one of the Clay Mathematics Institute’s million dollar
problems.

Lance Fortnow:

A person who proves P = NP would walk home from
the Clay Institute not with [a] $1 million check but
with seven.

(Because proving things (like the other six $1 million
problems) would become easy.)

A $1 Million Question

It is one of the Clay Mathematics Institute’s million dollar
problems.

Lance Fortnow:

A person who proves P = NP would walk home from
the Clay Institute not with [a] $1 million check but
with seven.

(Because proving things (like the other six $1 million
problems) would become easy.)

Consequences

From “A Personal View of Average-Case Complexity” by
Russsell Impagliazzo:

“Seemingly intractable algorithmic problems would become
trivial. . . Programming languages would not need to involve
instructions on how the computation should be performed,
Instead, one would just specify the properties that a desired
output should have in relation to the input.”

“One could use an ‘Occam’s Razor’ based inductive learning
algorithm to automatically train a computer to perform any
task that humans can.”

“In short, as soon as a feasible algorithm for an
NP-complete problem is found, the capacity of computers
will become that currently depicted in science fiction.”

Consequences

From “A Personal View of Average-Case Complexity” by
Russsell Impagliazzo:

“Seemingly intractable algorithmic problems would become
trivial. . . Programming languages would not need to involve
instructions on how the computation should be performed,
Instead, one would just specify the properties that a desired
output should have in relation to the input.”

“One could use an ‘Occam’s Razor’ based inductive learning
algorithm to automatically train a computer to perform any
task that humans can.”

“In short, as soon as a feasible algorithm for an
NP-complete problem is found, the capacity of computers
will become that currently depicted in science fiction.”

Consequences

From “A Personal View of Average-Case Complexity” by
Russsell Impagliazzo:

“Seemingly intractable algorithmic problems would become
trivial. . . Programming languages would not need to involve
instructions on how the computation should be performed,
Instead, one would just specify the properties that a desired
output should have in relation to the input.”

“One could use an ‘Occam’s Razor’ based inductive learning
algorithm to automatically train a computer to perform any
task that humans can.”

“In short, as soon as a feasible algorithm for an
NP-complete problem is found, the capacity of computers
will become that currently depicted in science fiction.”

Consequences

Scott Aaronson:

“There would be no special value in creative leaps, no
fundamental gap between solving a problem and recognizing
the solution once its found. Everyone who could appreciate
a symphony would be Mozart; everyone who could follow a
step-by-step argument would be Gauss; everyone who could
recognize a good investment strategy would be Warren
Buffett.”

Consequences

Brian Heinold:

“I don’t think I’d like to live in such a world. In fact, I
think it would be pretty boring.”

Importance of the P=NP problem

Fortnow:

“As we solve larger and more complex problems with greater
computational power and cleverer algorithms, the problems
we cannot tackle begin to stand out. The theory of
NP-completeness helps us understand these limitations and
the P versus NP problem begins to loom large not just as an
interesting theoretical question in computer science, but as
a basic principle that permeates all the sciences.”

Aaronson (refering to the other Clay Institute problems):

“We are after not projective algebraic varieties or zeros of
the Riemann zeta function, but the nature of
mathematical thought itself.”

Importance of the P=NP problem

Fortnow:

“As we solve larger and more complex problems with greater
computational power and cleverer algorithms, the problems
we cannot tackle begin to stand out. The theory of
NP-completeness helps us understand these limitations and
the P versus NP problem begins to loom large not just as an
interesting theoretical question in computer science, but as
a basic principle that permeates all the sciences.”

Aaronson (refering to the other Clay Institute problems):

“We are after not projective algebraic varieties or zeros of
the Riemann zeta function, but the nature of
mathematical thought itself.”

Further Reading

If you are interested, here are some good references:

The Golden Ticket: P, NP and the Search for the Impossible by Lance
Fortnow. Princeton University Press, 2013.

The Status of the P Versus NP Problem by Lance Fortnow,
Communications of the ACM, Vol. 52 No. 9, Pages 78-86.
http://cacm.acm.org/magazines/2009/9/38904-the-status-of-the-p-versus-np-problem/fulltext

A Most Profound Math Problem by Alexander Nazaryan.
http://www.newyorker.com/tech/elements/a-most-profound-math-problem

A Personal View of Average-Case Complexity by Russell Impagliazzo.
http://cseweb.ucsd.edu/ russell/average.ps

Reasons to Believe by Scott Aaronson.
http://www.scottaaronson.com/blog/?p=122

The Scientific Case for P 6= NP by Scott Aaronson.
http://www.scottaaronson.com/blog/?p=1720

Algorithms, 4th Edition by Sedgewick & Wayne. Pages 910-921.

