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The Poincaré Conjecture

Statement of the problem, as given on Wikipedia:

Every simply connected, closed 3-manifold is
homeomorphic to the 3-sphere.

Let’s examine each term so we can understand the whole
statement.
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Simply Connected

Every simply connected, closed 3-manifold is
homeomorphic to the 3-sphere.
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Simply Connected

Roughly speaking, a 2D region is simply connected if it has no
holes, like below.
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Simply Connected

More formally, a region is simply connected if every closed
curve can be shrunk to a point without leaving the region.

Imagine hitting the circles with a shrink ray. Will they be able
to get as small as we like, or will the region get in the way?
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Simply Connected

This applies in higher dimensions as well. For 3D shapes, there
can be holes, but they can’t “go all the way through” the
object. The same curve definition applies here as well.
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Closed

Every simply connected, closed 3-manifold is
homeomorphic to the 3-sphere.
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Closed

The rightmost figure below is the type that is relevant to the
Poincaré Conjecture.
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3-manifold

Every simply connected, closed 3-manifold is
homeomorphic to the 3-sphere.
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Manifolds

Ever think about how the earth is round, but it sure seems flat?
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Manifolds

That’s roughly the definition of a manifold. It’s a shape where
if you’re anywhere on it, and are small enough in relation to the
shape, you wouldn’t be able to tell it from a flat region.

Someone looking at it from the outside could tell it wasn’t flat,
but it certainly would appear flat to you no matter where you
are on the surface.
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Manifolds

Here are some 1-dimensional manifolds and non-manifolds:

Self-intersections and sharp points are bad.

A small enough creature living anywhere on the manifolds
would not be able to distinguish them from perfectly flat lines.
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2-Manifolds

Here are some 2D manifolds. The sphere on the right consists
only of the outside surface.
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3-Manifolds and Higher dimensions

A 3-Manifold adds a third dimension. The space we live in is a
3-manifold.

There’s nothing that stops us mathematically from defining
4-manifolds, 5-manifolds, etc., but they do become difficult to
visualize.
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Homeomorphic

Every simply connected, closed 3-manifold is
homeomorphic to the 3-sphere.
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Homeomorphic

From the Greek for “same shape”.

Think of shapes as made of Play-Doh. Two shapes are
homeomorphic if we can mold one into the other by stretching,
shrinking, and bending, continuously, without ever ripping,
folding, or gluing the shape.
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Homeomorphic

There’s an old joke that says a topologist is a person that can’t
tell the difference between a coffee cup and a doughnut.

The idea is that a coffee cup and a doughnut are
homeomorphic.

Note, however, that neither is homeomorphic to a ball because
the donut and coffee cup both have holes, but a ball doesn’t.
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3-sphere

Every simply connected, closed 3-manifold is
homeomorphic to the 3-sphere.
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Spheres

What we typically call a sphere is a 2-dimensional object. It’s
the surface of a perfectly round ball.
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Spheres

A 0-dimensional sphere is two points, the boundary of an
interval.

A 1-dimensional sphere is a circle, the boundary of a disk.

A 2-dimensional sphere is a the boundary of a ball.
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Spheres

Another way to define a circle is as all the points in the plane
that are equidistant from a given center point.

You can define a 2D sphere as all the points in space that are
equidistant from a center point.
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3-Sphere

Even though a sphere is a 2D object, we really need 3
dimensions to truly appreciate it.

Imagine you are a flat 2D person living on a piece of paper.
What would a sphere look like to you?

Similarly, even though a 3-sphere is a 3D object and we live in
3D, we would really need 4 dimensions to appreciate it.
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Creating a sphere

One way to create a sphere is to take two disks, glue them along
their boundary circle, and stretch them out until they have the
shape of hemispheres.

To create a 3-sphere, one could take two balls, glue them along
their boundary spheres, and stretch them. You would need to
be in 4D to do this.
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3-Sphere
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Henri Poincaré

Sometimes called the last true polymath, the last person to be
able to work in all of the branches of mathematics of his day.
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The Poincaré Conjecture

Every simply connected, closed 3-manifold is
homeomorphic to the 3-sphere.

So, roughly, it’s saying that any 3D shape with no holes that
appears “flat” to small creatures living on it can be
continuously stretched and bent until it becomes a 3-sphere.
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The history of the statement

Here is Henri Poincaré’s original 1904 statement of the problem:

Est-il possible que le groupe fondamental de V se réduise à la
substitution identique, et que pourtant V ne soit pas simplement
connexe?
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1904 to 1960

By the 1930s it had become one of the most famous problems in
math.

Over the years, dozens of famous mathematicians had
announced or published solutions, only to have flaws later
discovered.
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Steve Smale’s higher-dimensional proof

In 1961, Steve Smale surprised the mathematical world by
proving every simply connected, closed n-manifold is
homeomorphic to the n-sphere, as long as n > 4. Poincaré’s
case of n = 3 and the n = 4 case remained unproven.

44 / 59



The n = 4 case

In 1982 Michael Freedman proved the n = 4 dimension.
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Bill Thurston’s Geometrization Conjecture

Thurston came up with a far-reaching generalization of
Poincaré’s conjecture. It very roughly said that every closed
3-manifold can be broken up into 8 different types of geometric
pieces. This led to new directions in Poincaré research.
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Richard Hamilton’s Program

In the early 1980s, Richard Hamilton came up with an
approach that would solve the Geometrization Conjecture (and
thus Poincaré) if it could be completed. It involved something
called the Ricci flow. This is an approach using partial
differential equations that are related to the famous heat
equation. Hamilton made a lot of progress with this approach,
but he got hopelessly stuck on some details.
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The Clay Mathematics Institute

In 1998, a philanthropist named Landon Clay endowed the Clay
Mathematics Institute with a lot of money. In particular, they
identified 7 problems as “Millennium Problems” and gave each
a $1 million prize. Poincaré’s Conjecture was one of them.
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Grigory Perelman

In 2002, Grigory Perelman posted on archive.org (a site where
mathematicians and physicists upload drafts of their papers for
the public) a paper outlining a solution to the Geometrization
Conjecture. He followed this with two more papers. He left out
some details, and his arguments were hard to follow, but it was
clear that he had done some amazing work.
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Verification

Three groups of mathematicians set to working on verifying the
details in Perelman’s work.

John Morgan & Gang Tian, Huai-Dong Cao & Xi-Ping Zhu,
Bruce Kleiner & John Lott
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Verification
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Story time with uncle Brian
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Controversy!

The three groups were filling in the gaps in Perelman’s
arguments. Cao and Zhu in particular rewrote a lot of the
details themselves, especially where Perelman was unclear. But
their paper didn’t give enough credit to Perelman, and their
advisor, Shing-Tung Yau, talked it up in the media as if Cao
and Zhu were the ones who had solved the conjecture. This
didn’t go over very well.
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The Fields Medal

In 2006, Perelman was awarded the Fields Medal, the
mathematical equivalent of the Nobel prize. But he turned it
down, saying

“I’m not interested in money or fame; I don’t want to
be on display like an animal in a zoo. I’m not a hero
of mathematics. I’m not even that successful; that is
why I don’t want to have everybody looking at me.”
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The $1 million prize

In 2010, the Clay Mathematics Institute offered him the $1
million prize. Perelman again turned it down. He felt that the
prize should be shared with Hamilton, and he also said,

“[the prize] was completely irrelevant for me.
Everybody understood that if the proof is correct, then
no other recognition is needed.. . . the main reason is
my disagreement with the organized mathematical
community. I don’t like their decisions, I consider
them unjust.”

Perelman has stayed out of the mathematical spotlight, living
in St. Petersburg and not publicly working on math.
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The future

Though the problem has definitively been solved, the various
techniques invented for trying to solve it have opened up vast
new areas of research.
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Further reading

Article in the New Yorker: Manifold Destiny by Sylvia
Nasar and David Gruber. http://www.newyorker.com/
magazine/2006/08/28/manifold-destiny

Book: Poincaré’s Prize: The Hundred-Year Quest to Solve
One of Math’s Greatest Puzzles by George Szpiro, 2007.

Book: The Poincaré Conjecture: In Search of the Shape of
the Universe by Donal O’Shea, 2007.
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Image credits

Sphere: https://tex.stackexchange.com/questions/54193/how-to-draw-a-shaded-sphere

Torus: https://en.wikipedia.org/wiki/Solid_torus

Earth: http://www.esri.com/news/arcuser/0610/nospin.html

Wireframe sphere https://en.wikipedia.org/wiki/File:Sphere_wireframe_10deg_6r.svg

Donut to coffee cup: https://prateekvjoshi.com/2014/11/16/homomorphism-vs-homeomorphism/

3-sphere: https://en.wikipedia.org/wiki/File:Hypersphere.png

Young Poincaré: http://www.annales.org/archives/x/poincare.html

Old Poincaré: https://commons.wikimedia.org/wiki/File:Henri-Poincar%C3%A9.jpg

Smale: http://tetrahedral.blogspot.com/2011/03/6-months-in-rio-smale-solution-to.html

Freedman: http://celebratio.org/viewer/34/

Thurston: https://blogs.scientificamerican.com/cross-check/files/2012/08/Thurston_2.jpeg

Hamilton: https://en.wikipedia.org/wiki/File:Richard_Hamilton.jpg

Morgan: http://www.scgp.stonybrook.edu/wp-content/uploads/2011/04/John-Morgan1.jpg

Tian: https://en.wikipedia.org/wiki/File:Gang_Tian.jpeg

Cao and Zhu: http://www.gettyimages.com/photos/conjecture

Kleiner:
https://www.simonsfoundation.org/wp-content/uploads/2015/07/Kleiner-200x300_N4A2693.jpg

Lott: https://en.wikipedia.org/wiki/John_Lott_(mathematician)

Perelman: https://en.wikipedia.org/wiki/Grigori_Perelman

Manifold in last slide: http://galileo.math.siu.edu/mikesullivan/Courses/532/Sum13/
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