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Abstract

A graph G is said to be f -choosable if there exists a proper coloring from every
assignment of lists of colors to the vertices of G where the list sizes are given by f .
The sum choice number of G is the minimum

∑

v∈V (G) f(v) over all f such that G is
f -choosable. Here we determine the sum choice of the cartesian product P3 �Pn to be
8n − 3 − bn/3c. The techniques used here have applicability to choosability of other
graphs.

1 Introduction

Sum list coloring is a type of list coloring where each vertex is assigned a list of colors and
one seeks the minimum sum of the list sizes such that, regardless of the lists of those sizes
used, there exists a proper coloring from the lists. It is equivalent to minimizing the average
list size. Sum list coloring was introduced by Isaak in [6] and [7]. Subsequent work can be
found in [1], [2], [3], [4], and [5]. Formally, a size function f on a graph G is a function
f : V (G) → Z assigning each vertex a list size. An f -assignment C is a function assigning
each vertex of G a list of colors such that |C(v)| = f(v) for each v ∈ V (G). Our colors will
be positive integers and a list such as {1, 2, 3} will be written in abbreviated form as 123.
A C-coloring c is a function that assigns each vertex a color such that c(v) ∈ C(v) for each
v ∈ V (G). The coloring is proper if c(v) 6= c(w) whenever v is adjacent to w. We say G is
f -choosable if G can be properly colored from every f -assignment. The sum choice number,
χSC(G), of a graph G is the smallest constant k for which there exists an f such that G is
f -choosable and

∑

v∈V f(v) = k. We denote
∑

v∈V f(v) by size(f). If G is f -choosable, f is
called a choice function for G, and if f is a choice function where size(f) = χSC(G), then f
is called a minimum choice function.

It is easy to show that the sum choice number of any graph G is bounded by |V (G)| +
|E(G)|, the greedy bound (denoted GB). There are a number of graphs for which equality
holds, including complete graphs, paths, and cycles. See [7]. Such graphs are said to be
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sc-greedy. In [4] the author showed that the cartesian product P2 � Pn is sc-greedy. We will
show below that χSC(P3 �Pn) = GB−bn/3c. The techniques we develop to accomplish this
should be useful in determining the choosability of other graphs. Section 2 below introduces
further notation and provides examples to motivate these techniques. The techniques are
formally developed in section 3, and we then apply them to P3 � Pn in section 4.

2 Notation and Examples

Let G be a graph, H be an induced subgraph of G, and f be a size function on G. Define
the size function fH on G−H by fH(v) = f(v)− |N(v) ∩H| for each v ∈ V (G−H). If H
consists of a single vertex {w}, we will write fw. We will use fH to refer to the restriction
of f to H , and further, if we say that f is a size function on H , it will be understood that
we mean the restriction of f to H .

We label the vertices of P3 � Pn as in Figure 1. Let Coi denote the subgraph induced by
the vertices of column i, namely, v1,i, v2,i, and v3,i. Let Toi be the subgraph induced by the
top two vertices of column i, namely v1,i and v2,i, and let Boi be the subgraph induced by
the bottom two vertices, v2,i and v3,i.

v1,1 v1,2 v1,3 v1,n−1 v1,n

v2,1 v2,2 v2,3 v2,n−1 v2,n

v3,1 v3,2 v3,3 v3,n−1 v3,n

. . .

Figure 1: P3 � Pn

A size function on P3 � Pn will be given in array notation, with the (i, j) entry being
f(vi,j). Figure 2 shows some notational shortcuts we will use. A thin box like the one
shown on the left indicates a combined list size of 7 on a column. A box twice as thick, like
the one second from the left, indicates a combined list size of 13 on two adjacent columns.
The middle box indicates a combined list size of one less than the sum choice number on a
collection of adjacent columns. The other two parts of the figure display further examples
of notation and should be self-explanatory.

1

2 2

2

3

3
6

7 13 χSC − 1

Figure 2: Examples of notation
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We can think of list coloring as a game in which someone gives us a size function f and we
have to come up with lists to defeat it, that is, lists that show the graph is not f -choosable.
Below we have some examples in which we demonstrate our techniques for defeating a given
size function.
Example 1 : Consider the following size function on P3 � P2:

f =
2 2
1 3
2 2

.

The key here to defeating f is that f(v2,1) = 1. The most logical approach would be to
make sure that the single color in the list for v2,1 appears in the list of each neighbor of v2,1.
Since this color will not be available on any of these neighbors, we have essentially reduced

the problem to showing that P3 � P2 − v2,1 is not f v2,1-choosable (where f v2,1 =
1 2
2

1 2
). This,

in fact, works in both directions, and it is easy to show for any graph G and size function
f where some vertex v satisfies f(v) = 1, that G is f -choosable if and only if G − v is
f v-choosable. See Lemma 7 of [7] for a proof of a more general statement.
Example 2 : The above idea generalizes. Consider the following size function on P3 � P3:

f =
1 2 2
2 2 3
2 3 2

.

Look specifically at the restriction of f to the first column, Co1. There is an f -assignment

on Co1, C =
1
12
23
, that has only one proper coloring, c. The entire column plays the same role

here that the vertex with list size 1 played in the previous example. Therefore, to defeat the
size function we should use C on Co1 and choose lists on Co2 such that c(vi,1) is in the list
for vi,2, i = 1, 2, 3. This essentially reduces the problem to showing that P3 �P3−Co1 is not

fCo1-choosable (where fCo1 =
1 2
1 3
2 2

).

Example 3 : Let us continue generalizing. Consider the following:

f =
2 3 2 2
2 3 3 2
2 3 2 2

C =
13 234 46 56
12 126 456 45
23 135 56 46

.

The lists on Co3 ∪Co4 are constructed so that any proper coloring from C on these columns
must use color 4 on v1,3, color 6 on v2,3 and color 5 on v3,3. These colors are not available
on the neighboring vertices of Co2 and hence the lists on Co1 ∪ Co2 are essentially reduced

to
13 23
12 12
23 13

, a standard list coloring example which has no proper coloring (see the following

example). In this case column 3 plays a similar role to that of column 1 in the previous
example. The difference here is that we need help from the lists of column 4 to break
column 3 down to having only one proper coloring.
Example 4 : In explaining why there are no proper colorings for the lists mentioned in the
previous example, we are led to one further generalization of our initial idea. Arrange the
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lists sideways as below:

13 12 23
23 12 13

.

The list assignment 12
12 on Co2 has exactly two proper colorings, c1 and c2, where c1(v1,2) = 1,

c1(v2,2) = 2, and c2(v1,2) = 2, c2(v2,2) = 1. The lists on Co1 are constructed so that c1(v1,2)
and c1(v2,2) are in the lists for v1,1 and v2,1, respectively, and the lists for Co3 are similarly
constructed based on c2. Essentially what is happening is we have a subgraph H where the
lists are such that there are two proper colorings of H and there are two disjoint subgraphs
which are not fH-choosable.

3 Techniques and Lemmas

We will now formalize what we have seen in the preceding examples.

Definition 1. Let G be a graph with an induced subgraph H, and let f be a size function
on G. Define pc(G, f,H) to be the minimum k such that there exists an f -assignment C for
which there are k proper C-colorings of H such that every proper C-coloring of G restricts to
one of them. We will use the shorthand pc(G, f) = pc(G, f,G)

For instance, in Example 2, pc(Co1, f) ≤ 1 because the lists C =
1
12
23

have exactly one

proper coloring (we actually have pc(Co1, f) = 1 because Co1 is f -choosable). In Example

3, pc(Co3 ∪ Co4, f, Co3) ≤ 1. This can be seen from the lists
46 56
456 45
56 46

. We have, however, that

pc(Co3, f) > 1. The idea is that we need to use lists on both Co3 and Co4 in order to reduce
the number of possible proper colorings on Co3. Finally, in Example 4, the lists 12

12 on Co2
show pc(Co2, f) ≤ 2.

We now give a few lemmas. We will use the notation c(N(v)) to denote the set of colors
used by the coloring c on the neighbors of vertex v.

Lemma 1. Let G be a graph with H an induced subgraph of G, let J be an induced subgraph
of H, and let f be a size function on G. Suppose there exists an f -assignment C such that
pc(H, f) > 0 and the restriction to J of every proper C-coloring is the same proper coloring,
c. Suppose for every v in V (G − H) that |c(NJ(v))| = |NJ(v)|. Then pc(G, f,G − H) ≤
pc(G−H, fJ). Equality holds if J = H and pc(H, f) = 1.

Proof. Let D be an fJ-assignment on G−H having pc(G−H, fJ) proper colorings with the
colors named so that no colors used in the lists of C are used in the lists of D. Extend C to
an f -assignment on all of G by defining C(v) = D(v) ∪ c(NJ(v)) for v ∈ V (G−H). Under
these lists G−H must be colored from D, so pc(G, f,G−H) ≤ pc(G−H, fJ).

We now show equality when J = H and pc(H, f) = 1. Let F be any f -assignment.
Because pc(H, f) > 0, H can be properly colored by some F -coloring, c′. Consider the list
assignment D on G−H given by D(v) = F(v)− c′(N(v)). We have |D(v)| ≥ fH(v) for each
v ∈ V (G−H), so there exist at least pc(G−H, fH) proper colorings of G−H from D and
hence at least that many colorings from F . �
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This lemma formalizes what we saw in Examples 2 and 3. We will use this lemma often
enough that it is worthwhile to create notation for it. As shown in Figure 3, we will use
an arrow to indicate use of the lemma and gray out the lists used to indicate they cannot
be used for further reductions. The left part of the figure corresponds to Example 2, where
H = J = Co1. The right part corresponds to Example 3, where H = Co3∪Co4 and J = Co3.

1

11

2

2

2

2

2

2

2
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2
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2

2

2
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2

2

22

2

2

2

2

2 3

3

3

3

33

3
→→

Figure 3: Notation indicating a use of Lemma 1

We will next generalize what we encountered in Example 4:

Lemma 2. Let G be a graph and f a size function on G. Let H and H1, H2, . . . , Hk be
induced subgraphs of G whose vertex sets partition V (G), and suppose H1, H2, . . . , Hk are
not fH-choosable. Let C be an f -assignment on H for which there exist exactly m proper
C-colorings c1, c2, . . . , cm. Suppose that for each i = 1, . . . ,min{m, k}, there exists an index
j(i), with j(i1) 6= j(i2) for i1 6= i2, such that for each v ∈ V (Hj(i)), |ci(NH(v))| = |NH(v)|.
Then pc(G, f,H) ≤ max{m− k, 0}.

Proof. We will extend C to all of G so that every proper C-coloring restricts to one of exactly
max{m − k, 0} proper colorings on H . By hypothesis, for each j = 1, . . . , k there exists
an fH-assignment Dj that has no proper coloring. We can rename the colors if necessary
so that these share no colors in common with C. Now extend C to G as follows: for each
i = 1, 2, . . . ,min{m, k} and each v ∈ Hj(i), define C(v) = Dj(i) ∪ ci(NH(v)). It is clear that if
a proper C-coloring f restricts to ci on H , then Hj(i) cannot be properly colored from these
lists. Thus there are at most max{m− k, 0} proper C-colorings. �

We can picture this with H being in the center and the Hi as appendages that are used
to lower the number of proper colorings available for H . When we use this lemma we will
specify what the center H is. The verification that the appendages Hi are not f

H-choosable
is usually left to the reader. This lemma will be used almost exclusively with m = 2 and
k = 1 or 2.

For the next lemma, recall that paths are sc-greedy; that is, χSC(Pn) = 2n− 1. See [7].
This lemma provides some information about size functions near the greedy bound.

Lemma 3. Let f be a choice function on Pn. If size(f) = 2n− 1, then pc(Pn, f) = 1, and
if size(f) = 2n, then pc(Pn, f) = 2.

Proof. The proof of each statement is by induction on n. The base case, n = 1, is easy for
both statements. Assume now for any g of size 2n − 3 that pc(Pn−1, g) = 1 and for any h
of size 2n − 2 that pc(Pn−1, h) = 2. Let v be an endvertex of the path, and let w be its
neighbor on the path.

5



Suppose first that f(v) = 1. If size(f) = 2n − 1, then size(f v) = 2n − 3, and by the
induction hypothesis there exists an f v-assignment on Pn − v that has only one proper
coloring. Since f(v) = 1, this f v-assignment extends to an f -assignment on the entire graph
having exactly one proper coloring. A similar argument works when size(f) = 2n.

Suppose next that size(fPn−v) = 2n − 3. If size(f) = 2n − 1, then by the induction
hypothesis there exists an f -assignment on Pn − v which has only one proper coloring, c.
Extend this f -assignment to the entire graph by letting the list for v contain c(w). This
extension has only one proper coloring. A similar argument works when size(f) = 2n.

The only case left is size(fPn−v) = 2n − 2 and f(v) = 2. In this case, by the induction
hypothesis, there exists an f -assignment on Pn − v that has exactly two proper colorings,
c1 and c2. Extend this to the entire graph by letting the list for v be {c1(w), c2(w)}. This
f -assignment has exactly two proper colorings. �

This lemma will be most often used in the case of P3. Specifically, if size(f) = 5, then
pc(P3, f) = 1, and if size(f) = 6, then pc(P3, f) = 2. We have four more lemmas. The first
two are straightforward applications of Lemma 1, so their proofs are omitted. The other two
are rather technical lemmas that we will use several times.

Lemma 4. Let G be a graph with disjoint induced subgraphs G1 and G2. Let H1 and H2 be
induced subgraphs of G1 and G2, respectively, with some vertex of H1 adjacent to a vertex of
H2. Let f be a size function on G such that pc(G1, f, H1) = 1 and pc(G2, f, H2) = 1. Then
G is not f -choosable.

Lemma 5. Let f be a size function on P3 � Pn such that pc(P3 � Pn, f, Ton−1) = 1 and
f(v1,n) = f(v2,n) = 2. Then P3 � Pn is not f -choosable. A similar result holds with Ton−1

and v1,n replaced by Bon−1 and v3,n, respectively.

Lemma 6. Let f be a choice function on P3�Pn. Suppose for any minimum choice function
g on H = P3 � Pn − Con that pc(H, g, Ton−1) = pc(H, g, Bon−1) = 1.

(a) Suppose size(fH) = χSC(H) and size(fCon) = 8. If fCon 6=
2
4
2
, then at least one of

pc(P3 � Pn, f, Ton) and pc(Pn � P3, f, Bon) equals 1.

(b) Suppose size(fH) = χSC(H) + 1 and size(fCon) = 7. If fCon 6=
2
3
2
, then at least one of

pc(P3 � Pn, f, Ton) and pc(Pn � P3, f, Bon) equals 1.

(c) If size(fH) = χSC(H)+1 and fCon =
2
3
2
, then pc(P3�Pn, f, v1,n) = 1. More specifically,

there exists an f -assignment C satisfying C equal to
12
123
34

on Con from which any proper

coloring must use color 2 on v1,n. A similar result holds if we replace v1,n by v3,n.

Proof. To prove (a), first note that by Lemmas 4 and 5, f cannot assign list size 1 to any
vertex of Con or size 2 to adjacent vertices of Con. Next, if one of f(v1,n) and f(v2,n) is 2
and the other 3, then the result follows by Lemma 1. An analogous result holds for Bon.

To prove (b), consider first f(vi,n) = 1 for i = 1, 2, or 3. The possibilities (up to
symmetry) are taken care of by Lemma 1, as shown in Figure 4 (in the third possibility,
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P3 � Pn is not f -choosable). On the other hand, if f assigns list size 2 to adjacent vertices
of Con, then Lemma 2 applies with those two vertices as center.

1

1

1

1

2

2

2

2

3

3

3

3

4

56

χSC − 1

χSC

χSC

χSC + 1

χSC + 1

χSC + 1

→

→→

→→

Figure 4: Possibilities for Lemma 6(b)

To prove (c), let g be a size function on P3 � Pn − Con that agrees with f except that
g(v1,n−1) = f(v1,n−1) − 1. Then by hypothesis, there is a g-assignment C such that every
proper C-coloring must use color 2 on v2,n−1 and color 4 on v3,n−1. Name the colors of C such
that color 1 does not appear on C and extend C to an f -assignment on P3 �Pn by appending

color 1 to C(v1,n−1) and defining C on Con to be
12
123
34

. Suppose now that a proper coloring

uses color 1 on v1,n. Then P3 � Pn − Con must be colored from the original lists that force
the proper coloring to use color 2 on v2,n−1 and color 4 on v3,n−1. But then Con could not
be properly colored. So any proper coloring from these lists must use color 2 on v1,n. �

Lemma 7. Let f be a choice function on G = P3 � P3 − v1,1. Suppose f(v2,1) = f(v3,1) = 2
and f has size 7 on Co2 and on Co3. Let C be an f -assignment on Bo1 with |C(v2,1)∩C(v3,1)| =
1. Then C can be extended to an f -assignment on all of G such that there is no more than
one possible restriction of any proper C-coloring to To3. The result holds with To3 replaced
by Bo3.

Proof. We may assume that C(v2,1) = 13 and C(v3,1) = 23. Suppose first that f(vi,2) = 1
for some i. The size of f vi,2 on Co3 is 6 and Lemma 2 with center Co3 applies. It is not
difficult to check that P3 � P3 − (v1,1 ∪ vi,2 ∪ Co3) is not fCo3∪vi,2-choosable (and that the
lists showing this fit with the requirements of the claim). Next, suppose that f(vi,3) = 1 for
some i. Then the size of g = f vi,3 on Co2 is 6, so some f vi,3-assignment on Co2 has exactly
two proper colorings. Naming the colors so that one of the proper colorings uses color 1 on
v2,2 and color 2 on v3,2 would imply Bo1 couldn’t be properly colored. Thus there is only one
possible proper coloring on Bo1 ∪ Co2. We can then use Lemma 1 to conclude the desired
result.
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The possibilities remaining for f on Co2 are
3
2
2
,

2
3
2
, and

2
2
3
. The graph is not f -choosable in

the first case because the size of f on Bo1∪Bo2∪Bo3 is 12, which is less than the sum choice
number (χSC(P2 � P3) = 13 by Theorem 4 in [4]). For the other two possibilities, consider

the list assignments
13

13 123
23 12

and
23

13 12
23 123

on Bo1 ∪ Co2. In the first case no proper coloring can

use color 1 on v2,2, so Co2 must be colored from
13
23
12
. In the second case no proper coloring

can use color 2 on v3,2, so Co2 must be colored from
23
12
13
. Notice that these list assignments

are permutations of each other. So it suffices to assume that the lists for Co2 are
23
12
13

and

look at the possible sizes of f on Co3. Lists for each of the remaining possibilities are shown
below and the desired conclusion of the theorem is easily verified in each case. Three dots
indicates that a list is irrelevant.

23 13
12 123
13 23

23 123
12 12
13 23

23 · · ·
12 23
13 23

23 13
12 12
13 123

23 13
12 13
13 · · ·

�

4 The sum choice number of P3 � Pn

Theorem 8. The sum choice number of P3�Pn is GB−bn/3c. Explicitly, it is 8n−3−bn/3c.

Proof.
Upper Bound

We first prove that χSC(P3 � Pn) ≤ GB−bn/3c by exhibiting a choice function of that
size. To start, P3 � P1 is a path and is sc-greedy, and P3 � P2 is sc-greedy by Theorem 4
in [4], so there exist choice functions of the appropriate sizes for those cases. Next, we will

show that P3 � P3 is f -choosable for f =
2 3 2
2 2 3
2 2 2

.

This requires a bit of work. First, we show for any f -assignment C on H = Bo1∪Bo2, that
there must exist at least two proper colorings c1 and c2 such that either c1(v2,1) 6= c2(v2,1)
or c1(v3,2) 6= c2(v3,2). Suppose that every proper C-coloring uses the same color on v2,1. We
may assume C(v2,1) = 12 and the color used is 1. Then the lists must be of the form shown
below on the left. There are, up to symmetry, two possible cases from this, and they are
shown below. It can be easily checked that there is a proper coloring using each color on
v3,2.

12 2a
2b ab

12 21
23 13

12 23
24 34

Now consider lists C on the entire graph. By symmetry, using the result of the previous
paragraph, we may suppose that there exist two proper C-colorings p and p′ of H with
p(v2,1) 6= p′(v2,1). Set x = p(v2,1), y = p(v2,2), and z = p(v3,2). We can extend this to
a proper coloring of the entire graph unless the lists on the path G − H are of the form
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C(v1,1) = xa, C(v1,2) = yab, C(v1,3) = bc, C(v2,3) = ycd, C(v3,3) = zd. In addition, setting
x′ = p′(v2,1), y

′ = p′(v2,2) and z′ = p′(v3,2), we have that p′ can be extended to a proper
coloring of the entire graph unless the lists on the path G−H are of the form C(v1,1) = x′a′,
C(v1,2) = y′a′b′, C(v1,3) = b′c′, C(v2,3) = y′c′d′, C(v3,3) = z′d′.

Now as x′ 6= x, we can see x′ = a and a′ = x. As x = a′ ∈ C(v1,2) = yab and x 6= a,
x 6= y, we must have x = b. So a′ = b and since b′ 6= a′, we have b′ 6= b. Next, since b′ 6= b
and b′ ∈ C(v1,3) = bc, we have b′ = c and c′ = b. Also, because b′ 6= b, b′ = c 6= y, and
b′ ∈ C(v1,2) = yab, we have b′ = a and so c = a. Then, since yab=y′a′b′, and b′ = a, a′ = b,
we have y′ = y. As y′c′d′ = ycd, and c = a, c′ = b, the list on v2,3 must equal yab, and
as d 6= c = a, we must have d = b. Further, as d′ 6= c′ = b, we have d′ = a. Finally, as
b = d ∈ Cv3,3 and a = d′ ∈ C(v3,3), the list on v3,3 must equal ab. All of this means the lists
must be as shown below (a dot indicates an unknown color).

ab yab ab
ab y · yab
· · ab ab

We can find a proper coloring from these lists by using color b on v2,1 and color y on v2,2.
Tracing the implications from these choices allows us to properly color all of the vertices,
except possibly v3,1. However, as this coloring uses color b on both neighbors of v3,1, there
is a color available there.

Having established this, we now inductively obtain a minimum choice function in the
general case. For n ≡ 0 (mod 3) we obtain a choice function of size χSC(P3 � Pn−1) + 7 as
follows: Set G = P3 � Pn and H = Con−2 ∪ Con−1 ∪ Con. Given a minimum choice function

g on P3 � Pn−3 define a size function f to be equal to
3 3 2
4 2 2
3 2 2

on H and set f = g on G−H .

To see that G is f -choosable, let C be a f -assignment. There exists a proper C-coloring of
G−H , and notice that fG−H is equal to the choice function of size 20 considered above, so
we will be able to color H as well.

For n ≡ 1, 2 (mod 3), we can extend a minimum choice function on P3 �Pn−1 to P3 �Pn

by assigning sizes
3
2
3
on Con. Calling the extended function f , notice that fG−Con =

2
1
2
, so

there exists a proper coloring of Con from any lists of these sizes. So we can combine such a
proper coloring with a proper coloring G − Con to color all of G. We thus obtain a choice
function of size χSC(P3 � Pn−1) + 8 on P3 � Pn.

Lower bound

We will show by strong induction on n that

χSC(P3 � Pn) ≥ χSC(P3 � Pn−1) +

{

7 if n ≡ 0 (mod 3)
8 otherwise

,

and moreover that any minimum choice function f on P3 � Pn satisfies that if n ≡ 0 or 1
(mod 3), then pc(P3 � Pn, f, Con) = 1, and if n ≡ 2 (mod 3), then pc(P3 � Pn, f, Ton) = 1
and pc(P3 � Pn, f, Bon) = 1. We will call this the minimum choice property. From this the
statement of the theorem follows.
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For all that follows assume that f is a size function on P3 � Pn. Our base cases are
n = 1, 2. The n = 1 case follows directly from Lemma 3. Next is the n = 2 case. Following
that will be three cases according to the congruence of n modulo 3. Each case will consist of
first verifying the lower bound, which is done by showing there is no choice function of size
one less than the proposed value, and then verifying the minimum choice property.

Case n = 2:
Let f be a minimum choice function on P3 � P2. We must show pc(P3 � P2, f, To2) =

pc(P3 � P2, f, Bo2) = 1. Note that by symmetry this result will also hold for To1 and Bo1.
Now by Theorem 4 in [4], χSC(P2�P3) = 13 and since χSC(P3) = 5, there are four possibilities
for size(fCo2): 5, 6, 7, and 8. For size 5, pc(P3 � P2, f, Co2) = 1 by Lemma 3. For size 6,
pc(P3 � P2, f, Co2) = 1 by Lemma 2 with center Co2 (the value of m in Lemma 2 is 2 by
Lemma 3). For size 8, pc(P3 � P2, f, Co2) = 1 by Lemma 1. For this part of the paper it is
helps to have something to look at, so these cases are shown in the top line of Figure 5.

1
1

1
1 2

3

3

4

4

5 5

5 55

555

6 6

6 6 66

6

7 7

7 88

→→

→→→→

→

Figure 5: n = 2 case

For the size 7 case, see the bottom two lines of Figure 5 for all the possibilities where a
list of size 1 occurs. For those for which the size 1 list is on Co1, Lemma 1 is used followed by
Lemma 2 with center Co2. For those with the size 1 list on Co2, only Lemma 1 is used. This
just leaves the two cases below (up to symmetry). For the first size function, immediately
to the right are lists that show pc(P3 � P2, f, Co2) = 1. Shown immediately to the right
of the second size function is a set of lists that shows pc(P3 � P2, f, To2) = 1. To show
pc(P3 � P2, f, Bo2) = 1 use Lemma 2 on these lists with center Bo2.

2 2
2 3
2 2

13 23
12 123
23 13

2 3
2 2
2 2

23 123
12 12
13 23

Case n ≡ 0 (mod 3):
Lower bound: We show that there is no choice function f of size χSC(P3 � Pn−1) + 6.

The only possibilities for f are shown in the top half of Figure 6 and each is taken care of
by Lemma 1.

Minimum choice property: We must show that if f is a minimum choice function on
P3 �Pn, then pc(P3 �Pn, f, Con) = 1. Note that f has size χSC(P3 �Pn−1)+7. The cases to

10



4

55

5

6

6

7

χSC − 2

χSC

χSC

χSC + 1

χSC + 1

χSC + 2 →

→→

Figure 6: Possibilities for the n ≡ 0 (mod 3) case

consider are shown in the bottom half of Figure 6. The first is clear and the second is taken
care of by Lemma 2 with center Con. The last case follows quickly from Lemma 1 using the
induction hypothesis.

Case n ≡ 1 (mod 3):
Lower bound: We show that there is no choice function f of size χSC(P3 �Pn−1) + 7. We

look at possible sizes on Con−1 ∪Con. The only possibilities for f are shown in Figure 7 and
each is taken care of by Lemma 1.

1213 14χSC − 1 χSCχSC + 1 →→

Figure 7: Possibilities for the lower bound of the n ≡ 1 (mod 3) case

Minimum choice property: Let f be a choice function on P3�Pn of size χSC(P3�Pn−1)+8.
We must show pc(P3 �Pn, f, Con) = 1. We look at the possible sizes on Con. The size 5 case
is trivial. Size 6 is taken care of by Lemma 2, and size 8 is taken care of by Lemma 1. See
the top line of Figure 8.

1

2
2

2 2

2

2

2
3 34

5

55

6

6

6

77777

7 77

8

8

χSC

χSC

χSC

χSC + 1

χSC + 1

χSC + 2

χSC + 2

χSC + 3

χSC + 3 →

→→

Figure 8: Possibilities for the minimum choice property of the n ≡ 1 (mod 3) case

The remaining case is size 7 on Con. See the middle line of Figure 8 for the possibilities
on Con−1. If f has size 5 or 6 on Con−1, then the graph is not f -choosable by the n = 2
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case when f has size 5 on Con−1 and by Lemma 2 with center Con−1 when f has size 6 on
Con−1. If f has size 8 on Con−1, then Lemma 6 (a) takes care of all the possibilities except if

f is
2
4
2
on Con−1. Repeated applications of Lemma 1 followed by an application of Lemma 2

with center Con take care of this case, as shown in the bottom left of Figure 8. If f has
size 7 on Con−1, then Lemma 6 (b) together with Lemma 1 take care of everything except
the possibility shown in the bottom right of Figure 8. For this possibility, Lemma 6 (c)

guarantees that any proper coloring from an f -assignment C equal to
12
123
34

on Con−1 must use

color 2 on v1,n−1. Note further that by symmetry we can apply the lemma in essentially the
same way but with v3,n−1 taking the place of v1,n−1. We want extend C to include Con in
cases depending what f is on Con. Note first that by Lemma 4 if f(vi,n) = 1 or if f(vi,n) = 2
and f(v2,n) = 1 for i = 1, 3, then P3 �Pn is not f -choosable. The lists given below take care
of the remaining cases (by symmetry these are the only remaining cases). Each of these is
easily checked by starting with the fact that color 2 must be used on v1,n−1.

12 123
123 1
34 124

12 23
123 134
34 14

12 124
123 14
34 14

Case n ≡ 2 (mod 3):
Lower bound: We show that there is no choice function f of size χSC(P3 � Pn−1) + 7.

First, the possible sizes on Con are 5, 6, and 7. See the top two lines of Figure 9. The first
and last cases are easily taken care of by Lemma 1. Next, the possible sizes on Con−1 ∪ Con
are 13, 14, and 15. Size 15 is quickly taken care of by Lemma 1.

replacemen

1
1

1

2
2

22

2
34

45

6

666

666

6

7

7

7

88

88

88

1213 14 15

χSC − 1

χSC

χSC

χSC

χSC

χSC + 1

χSC + 1

χSC + 1

χSC + 2

χSC + 2

χSC + 2

→→

→

→

→→

Figure 9: Some possibilities for the lower bound of the n ≡ 2 (mod 3) case

Next, looking at size 14, we must have size 6 on Con and size 8 on Con−1. The possible

12



sizes on Con−2 are 6, 7, and 8. See the third line of Figure 9. The size 6 case follows from
Lemma 2 with center Con−2. For the size 7 case, Lemma 6(b) takes care of all the cases

except if f is
2
3
2
on Con−2. In this case, Lemma 6 (c) guarantees that any proper coloring

from an f -assignment C equal to
12
123
34

on Con−2 must use color 2 on v1,n−2. By the n = 2

case, there exists an f v1,n−2-assignment D on Con−1 ∪ Con such that any proper D-coloring
must use color 1 on v2,n−1 and color 4 on v3,n−1. If we extend C to Con−1 ∪ Con by setting
C(v) = D(v) for each vertex v except that we append color 1 to the list of v1,n−1, then the
resulting lists have no proper coloring. Next, for the size 8 case, Lemma 6 (a) and Lemma 1
take care of all the cases except the one shown on the bottom two lines of Figure 9, for which
repeated applications of Lemma 1 apply.

We now look at size 13. See the top line of Figure 10. The possible sizes on Con−2 are
7, 8, and 9. The size 7 and 9 cases are shown in the second and third lines, respectively, of
Figure 10. For the size 8 case, Lemma 4 takes care of the case where a list size of 1 appears
on Con−2. The remaining cases up to symmetry are shown on the bottom three lines of
Figure 10.

1

2

2

2

3

33

4

4

5

5

5

6

7

7

8

9

9

13

131313

13

13

13

χSC − 1

χSC − 1

χSC

χSC

χSC

χSC + 1

χSC + 1

χSC + 1

χSC + 1

χSC + 1

χSC + 2

χSC + 2χSC + 2

→

→→

→

→

→→

→

Figure 10: Further possibilities for the lower bound of the n ≡ 2 (mod 3) case

Minimum choice property: Let f be a function of size χSC(P3 � Pn−1) + 8. The possible
sizes on Con are 5, 6, 7, and 8. Sizes 5 and 8 are taken care of by Lemma 1 and size 6 follows
from Lemma 2 with center Con. The possible sizes on Con−1 ∪ Con are 13, 14, 15, and 16.
Sizes 13 is clear and size 16 follows from Lemma 1. See Figure 11.
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55 6 7 8

13

13 14 15

16

χSC

χSC

χSC + 1

χSC + 1

χSC + 2

χSC + 2χSC + 3

χSC + 3

→

→

Figure 11: Possibilities for the minimum choice part of the n ≡ 2 (mod 3) case

Now consider the case where the size on Con−1 ∪ Con is 15. As previously mentioned,
the only size of f on Con left to consider is size 7. For Con−2, the possible sizes are 6, 7,
and 8. See Figure 12. In the case of size 6, Lemma 2 with center Con−2 implies P3 � Pn

is not f -choosable. For size 7, we can apply Lemma 6(b) and Lemma 1 except in the case

where f on Con−2 is
2
3
2
. In that case Lemma 6 (c) guarantees that any proper coloring from

an f -assignment C equal to
12
123
34

on Con−2 must use color 2 on v1,n−2. Thus color 2 is not

available on v1,n−1 or v2,n−2, so we have satisfied the conditions for Lemma 7 (using f v1,n−2),
which implies the desired result. Finally, in the case of size 8, we can apply Lemma 6(b) and

Lemma 1 except in the case where f on Con−2 is
2
4
2
. This case is taken care of by Lemma 1

followed by Lemma 7.

1

2
2

22

2
34

6 7

777

7

7

77 88

8

8

8

8 χSC

χSC

χSC + 1χSC + 2

→→

Figure 12: Some possibilities where the size on Con−1 ∪ Con is 15

Now consider size 14 on Con−1 ∪Con. Since the size on Con must be 7, the size on Con−1

must be 7 also. The possibilities on Con−2 are sizes 5, 6, 7, 8, and 9. Size 5 would lead to
a size of 19 on Con−2 ∪ Con−1 ∪ Con, which is less than the sum choice number. The other
possibilities are shown on the top line of Figure 13. For size 6, we then have that the size
on Con−2 ∪ Con−1 ∪ Con must be 20 and the result follows from the n = 3 case. For the
other cases, first note that if one of the lists on a vertex v of Con−2 has list size 1, then f v

has size 13 on Con−1 ∪ Con and the result follows from the n = 2 case. Next, if f assigns
list size 2 to adjacent vertices of Con−2, then in the case of size 7, Lemma 7 applies, and
otherwise P3 � Pn is not f -choosable (in the case of size 8, this follows from Lemma 2 with
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center those two vertices, and in the case of size 9 it follows from Lemma 5.) The remaining
possibilities for size 9 are shown on the bottom three lines of Figure 13. In the first case, the
graph turns out not to be f -choosable. The last case requires an application of Lemma 7
after a Lemma 1 reduction.

1

1

2
2

2
2

2

3

3

3

3
3
3

44
5

5

6

6

77777

7

7777

7

8 9

13

14141414

1414

χSC

χSC

χSC

χSC

χSC + 1χSC + 2χSC + 3

→→

→

→

→

Figure 13: Possibilities where the size on Con−1 ∪ Con is 14

The only remaining possibility for size 7 is if f is equal to
2
3
2
on Con−2. Let g be a

size function on P3 � Pn − (Con−2 ∪ Con−1 ∪ Con) equal to f everywhere except g(vi,n−3) =
f(vi,n−3) − 1 for i = 1, 2, 3. As g has size less than the sum choice number, let C be a
g-assignment with no proper coloring and choose the color names so that color i is not in

C(vi,n−3) for i = 1, 2, 3. Extend C to Con−2 by setting it equal to
12
123
23

there. Then no proper

C-coloring can use color 2 on v2,n−2. From here Lemma 7 applies. A very similar argument
applies in the case of size 8 if f assigns list size 2 to a vertex of Con−2 and list size 3 to an
adjacent vertex of Con−2.

The only remaining case is if f on Con−2 is
2
4
2
. Consider cases on Con−1. If f assigns

list size 2 to both vertices of H = {v1,n−1, v2,n−1}, then Lemma 2 applies with center H .
See the top line of Figure 14 for the work needed to show P3 � Pn − (Con−1 ∪ v3,n−1) is not
fH-choosable. The same argument applies if H = {v2,n−1, v3,n−1}. Next, if f(v1,n−1) = 1 or
f(v3,n−1) = 1, then P3�Pn is not f -choosable. See the second and third lines of of Figure 14.
If f(v2,n−1) = 1, then we first apply Lemma 1. See the last line of Figure 14. Then by
Lemma 6(c) we can choose lists on P3 �Pn− (Con−1∪Con) so that every proper coloring has
only one choice of a color on v1,n−2. Choose lists so to make that color unavailable on v1,n−1.
So, by this point, either v1,n−1 or v3,n−1 has been reduced to a list size of 1. Therefore we
can apply Lemma 1 one more time to reduce down to a list size of 5 on Con and the result
follows.

Next, consider cases on Con. If any vertex gets list size 1, the result follows. See Figure 15.

Up to symmetry, the only possibilities left to check are f equal to
2
3
2
on Con−1, and f equal

to
2
3
2
or

2
2
3
on Con. Define a size function g on P3 � Pn − (Con−2 ∪ Con−1 ∪ Con) equal to
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Figure 14: Subcases of the final case
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Figure 15: A few more subcases of the final case
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f everywhere except g(v) = f(v) − 1 for v ∈ Ton−3. Since the size of g is less than the
sum choice number, there exists a g-assignment C that has no proper coloring. Assume that
the colors are named so that color 1 is not in C(v1,n−3) and color 2 is not in C(v2,n−3) and
append those colors to the respective vertices to turn C into an f -assignment. Next, define
the following list assignments, where x can be any color other than 2 or 3.

D1 =
12 23 13
1234 123 12
14 13 23x

D2 =
12 23 13
1234 123 123
14 13 23

.

In the case of f equal to
2
2
3
on Con extend C to all of P3 � Pn by setting C equal to D1 on

Con−2 ∪Con−1 ∪Con. No proper C-coloring can use color 2 on v2,n−2 as otherwise P3 � Pn −
(Con−2 ∪ Con−1 ∪ Con) would have to be colored by non-colorable lists. Our goal is to show
pc(P3 �Pn, f, Ton) = 1 and pc(P3 �Pn, f, Bon) = 1. The former does not rely on any of this
as it follows from Lemma 2 with center Ton. For the latter we must have that any proper
C-coloring c must satisfy c(v2,n) = 2 and color c(v3,n) = x. This can be easily checked by
first supposing that c(v2,n) = 1, tracing through to get a contradiction, then supposing that
c(v3,n) = 3, and tracing through using the fact that c(v2,n) = 2 to get a contradiction.

Finally, consider f equal to
2
3
2
on Con. Extend C to all of P3 � Pn by setting C equal

to D2 on Con−2 ∪ Con−1 ∪ Con. Again, no proper C-coloring can use color 2 on v2,n−2. We
show that pc(P3 � Pn, f, Con) = 1. It suffices to verify that any proper C-coloring c must
satisfy c(v1,n) = 1, c(v2,n) = 3, and c(v3,n) = 2. One can check this by first supposing that
c(v2,n) = 1, tracing through to get a contraction, and then supposing that c(v2,n) = 2, tracing
through again to get a contradiction. �

5 Conclusion

Though the analysis of P3 � Pn has proved to be tedious, it has hopefully demonstrated
how the techniques developed earlier in the paper are used. The author has attempted to
apply these techniques to larger cartesian products, Pm � Pn, but has not been able to fully
determine the sum choice number even in the case m = 4. It would be interesting to see if
the techniques above are sufficient or if something new is needed.

This work is a modified version of part of the author’s PhD thesis at Lehigh University.
The author would like to thank Garth Isaak and the referees for helpful comments and
suggestions.
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