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Abstract

Let f be a function assigning list sizes to the vertices of a graph G.
The sum choice number of G is the minimum

∑
v∈V (G) f(v) such that for

every assignment of lists to the vertices of G, with list sizes given by f ,
there exists proper coloring of G from the lists. We answer a few questions
raised in a paper of Berliner, Bostelmann, Brualdi, and Deaett. Namely,
we determine the sum choice number of the Petersen graph, the cartesian
product of paths P2 � Pn, and the complete bipartite graph K3,n.

1 Introduction

List coloring is a form of graph coloring in which each vertex is given a list
of permissible colors, and one tries to assign colors to vertices such that each
vertex is assigned a color from its list, with adjacent vertices getting different
colors. More formally, our setting is as follows: We have a graph G with vertex
set V and a set of colors C. Usually we take C to be a finite set of positive
integers, and lists such as {1, 2, 3} are written in the abbreviated form 123. A
size function f : V → Z assigns to each vertex a list size. An f -assignment
C : V → 2C is an assignment of a list of colors to each vertex v such that
|C(v)| = f(v). A C-coloring is a function c : V → C such that c(v) ∈ C(v), and
c is called proper if c(v) 6= c(w) when v and w are adjacent vertices. If G has a
proper C-coloring we say G is C-colorable, or simply that C is colorable. We say
G is f -choosable if G can be properly colored from every f -assignment. If G is
f -choosable where f ≡ k for some integer k, then G is said to be k-choosable.
The smallest constant k for which is G is k-choosable, often called the choice
number, has been a topic of considerable interest.

In this paper we try to minimize the sum of the list sizes. That is, we
seek the smallest constant k for which G is f -choosable with

∑
v∈V f(v) = k.

This constant is called the sum choice number of the graph, and it is denoted
by χSC(G). We further denote

∑
v∈V f(v) by size(f). Showing χSC(G) = k

proceeds in two parts. We must exhibit a function f of size k such that every
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f -assignment has a proper coloring, and for every g of size k − 1, we must find
a g-assignment with no proper coloring.

We can get an upper bound for the sum choice number as follows. Choose
any ordering v1, . . . , vn of the vertices of G. Define a size function f by f(vi) =
1+ |{vj : i < j, and vivj ∈ E(G)}| for i = 1, . . . , n. Then size(f) = n+e, where
n is the number of vertices of G and e is the number of edges. Greedy coloring,
that is, coloring the vertices in order according to their index such that each
vertex is assigned the smallest color on its list which is has not been assigned to
a vertex of lower index, shows that G is f -choosable, and hence for any graph,
χSC(G) ≤ n + e. We will refer to n + e as the greedy bound, and sometimes
denote it by GB(G), or just GB when there is only one graph involved. Any
graph for which the sum choice number is in fact n+ e is called sc-greedy. Such
graphs include trees, cycles, complete graphs. Moreover, if each of the blocks of
a graph are sc-greedy, then the graph itself is sc-greedy. See [1] and [5].

A size function f for which G is f -choosable will be called a choice function.
Let G be a graph with an induced subgraph H . We denote by fH , CH , and cH ,
the restrictions of the size function, etc. to H . For any vertex v ∈ V (G), we

define the size function f̃v on G − v by f̃v(w) = f(w) − 1, if w is adjacent to

v, and f̃v(w) = f(w) otherwise. Note that, in general, a size function g may
have g(v) ≤ 0. In this case, any g-assignment C has C(v) = ∅, and G is not
g-choosable.

We now define the following:

ρ(G) = min
v∈V (G)

{χSC(G− v) + deg(v) + 1},
τ(G) = min

f
{size(f) : G is f -choosable and 2 ≤ f(v) ≤ deg(v)}.

Size functions f for which f(v) = 1 or f(v) > deg(v) for some vertex v we call
simple size functions, and all others, non-simple size functions. The following
lemma is the simplest special case of Lemmas 7 and 8 in [5].

Lemma 1. Let f be a size function on a graph G.
(a) If f(v) = 1 for some vertex v ∈ V (G), then G is f -choosable if and only

if G− v is f̃v-choosable.
(b) If f(v) > deg(v) for some vertex v, then G is f -choosable if and only if

G− v is fG−v-choosable.

Lemma 2. Let G be a graph. Then χSC(G) = min{ρ(G), τ(G)}. In particular,
if G− v is sc-greedy for every v ∈ V (G), then χSC(G) = min{GB(G), τ(G)}.
Proof. Let f be a simple choice function (i.e., G is f -choosable). Suppose first

that f(v) = 1 for some v ∈ V (G). Then G− v is f̃v-choosable by Lemma 1, and
we have

size(f) = size(f̃v) + deg(v) + 1 ≥ χSC(G− v) + deg(v) + 1 = ρ(G).

Secondly, suppose that f(v) > deg(v) for some v ∈ V (G). Then then G − v is
fG−v-choosable by Lemma 1, and since size(f) = size(fG−v) + f(v), we have

size(f) ≥ size(fG−v) + deg(v) + 1 ≥ χSC(G− v) + deg(v) + 1 = ρ(G).
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So size(f) ≥ ρ(G) for any simple choice function f , and the result follows. �

The preceding lemma allows for considerable simplification of many proofs.
Simple size functions can be thought of as somewhat trivial, though bothersome
cases which need to be considered, and the lemma above is our attempt to
dispense with much of the trouble.

Lemma 3. Let G be a graph decomposable into blocks G1, . . . , Gk. Then

χSC(G) =

k∑

j=1

χSC(Gj)− k + 1.

In particular, a graph all of whose blocks are sc-greedy is sc-greedy.

The lemma above follows immediately from Theorem 1 in [1]. An easy
corollary is that a graph obtained from a sc-greedy graph by attaching a pendant
vertex is also sc-greedy. In fact, if G′ is obtained in this way from G, then
χSC(G

′) = χSC(G) + 2.

2 Strings of Cycles

The following theorem answers a question raised in [1]. The symbol � denotes
the Cartesian product, and Pn is the path on n vertices.

Theorem 4. The graph P2 � Pn is sc-greedy; that is, χSC(P2 � Pn) = 5n− 2.

Proof. Label the vertices as in Figure 1. For any k = 1, . . . , n, let Gk be
the subgraph induced by vertices tk and bk, let Lk be the subgraph induced
by vertices t1, b1, . . . , tk, bk, and let Rk be the subgraph induced by vertices
tk, bk, . . . , tn, bn.

t1 t2 t3 tn−1 tn

b1 b2 b3 bn−1 bn

. . .

Figure 1: P2 � Pn

The proof is by induction on n. The basis P2 is a complete graph, hence
is sc-greedy. Now assume that P2 � Pk is sc-greedy for k < n. We will show
G = P2 � Pn is sc-greedy; that is, its sum choice number is 5n− 2. Let f be a
function on G of size 5n− 3. We will suppose that G is f -choosable and show
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that this implies that size(f) must in fact be at least 5n− 2, and hence P2 �Pn

cannot be f -choosable if size(f) = 5n− 3.
First, it is easy to see that if size(fGk

) ≤ 2 for any k = 1, . . . , n, then
G is not f -choosable, so we may assume that size(fGk

) ≥ 3. Now suppose
for some 1 < k < n that size(fGk

) ≤ 4. By the induction hypothesis we have
χSC(Lk) = 5k−2, and hence size(fLk−1

) ≥ 5k−6, and similarly by the induction
hypothesis χSC(Rk) = 5(n− k + 1)− 2, so size(fRk+1

) ≥ 5(n− k)− 1. Thus we
must have size(f) ≥ (5k− 6)+4+ (5(n− k)− 1) = 5n− 3, and hence the above
inequalities must be equalities. We will now define an uncolorable f -assignment
C. It is easy to check that since size(fGk

) ≤ 4, there exists an fGk
-assignment

C′ such that there are at most two distinct proper C′-colorings, c1 and c2, of Gk.
Let c1 = c2 if there is only one. Let g1 be the size function on Lk−1 defined
by g1(v) = f(v) − 1 if v ∈ V (Gk−1) and g1(v) = f(v) otherwise, and let g2
be the size function on Rk+1 defined by g2(v) = f(v) − 1 if v ∈ V (Gk+1) and
g2(v) = f(v) otherwise. As size(g1) < χSC(Lk−1) and size(g2) < χSC(Rk+1),
Lk−1 is not g1-choosable, and Rk+1 is not g2-choosable. Hence there exists a
g1-assignment C1 and a g2-assignment C2, neither of which has a proper coloring.
Moreover, we may name the colors so that C′(Gk) is disjoint from C1(Lk−1) and
C2(Rk+1). Define C by C = C′ on Gk, C = C1 on Lk−1, and C = C2 on Rk+1,
except that we append c1(tk), c1(bk), c2(tk), and c2(bk) to C1(tk−1), C1(bk−1),
C2(tk+1), and C2(bk+1), respectively. Let c be a C-coloring. If c is proper, then
cGk

is equal to either c1 or c2. If cGk
= c1, then cLk−1

must be a proper C1-
coloring of Lk−1, and if cGk

= c2, then cRk−1
must be a proper C2-coloring of

Rk−1, neither of which exists. Hence size(fGk
) ≥ 5 for k = 2, . . . , n− 1.

If f(t1) = 1, then by Lemma 1, G is f -choosable if and only if G − t1 is

f̃t1-choosable. However, G− t1 is sc-greedy by the induction hypothesis and the

comment following Lemma 3, hence χSC(G− t1) = 5n− 5 > 5n− 6 = size(f̃t1),
so G is not f -choosable. A similar argument applies if any of b1, tn, or bn
has list size 1. Thus size(fG1

) ≥ 4 and size(fGn
) ≥ 4, and hence size(f) =∑n

k=1 size(fGk
) ≥ 5(n− 2) + 2(4) = 5n− 2. �

In addition to the above result, we have determined by a lengthy case analysis
that P3 �Pn has sum choice number GB−bn−1

8 c. See [3] for details. Moreover,
ideas very similar to those used in the proof above could likely be used to
show that if instead of all 4-cycles, we used cycles of arbitrary and varying
lengths greater than 3, the graph obtained is still sc-greedy. In fact, if, instead
of merely laying cycles edge-to-edge, we laid them along a tree structure, the
resulting graph would still be sc-greedy. What other underlying structures lead
to sc-greedy graphs? We leave these problems for interested readers.

However, 3-cycles are somewhat more complicated to deal with. Consider
the graph pictured in Figure 2, obtained by laying n− 2 triangles edge-to-edge.
This is the graph is P 2

n . Formally, it has vertex set v1, . . . , vn with vi adjacent
to vj if and only if 0 < |i − j| ≤ 2. Below we prove that it is sc-greedy. A
longer proof using the same techniques can be used to show that for any choice
function f of minimum size on P 2

n , there exists an f -assignment forcing the
vertices v1 and v2 to be specific colors.
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Figure 2: P 2
n

Theorem 5. The graph P 2
n is sc-greedy; that is, χSC(P

2
n) = 3n− 3.

Proof. The proof is by induction on n. Note that P 2
1 , P

2
2 and P 2

3 are complete
graphs, and hence are sc-greedy. Now assume that P 2

m is sc-greedy for allm < n.
Note that removing a vertex from P 2

n leaves a graph whose blocks are either
paths or copies of P 2

m for values of m less than n. By the induction hypothesis
and Lemma 3, such a graph is sc-greedy. Thus by Lemma 2, it remains to
show τ(P 2

n) ≥ 3n− 3. That is, we must now show that for any non-simple size
function f of size 3n− 4, P 2

n is not f -choosable. Let Rk denote the subgraph of
P 2
n which is induced by the vertices vk, . . . , vn.
Note that f(v1) = 2 since deg(v1) = 2. Let j be the least index greater

than 1 of a vertex having list size 2. This index must exist and be at most
n − 2, as otherwise size(f) would exceed 3n − 4. As j ≤ n − 2, Rj and Rj+1

are defined. Note that if there is a vertex vk, k < j, with f(vk) ≥ 4, then
size(fRj

) < χSC(Rj). Thus we may assume that f(v1) = f(vj) = 2 and f(vk) =
3 for 1 < k < j. We now create an f -assignment C with no proper coloring.
Let C(v1) = 12 and C(vi) = 123 for 1 < i < j. Let C(vj) be 34 if j is congruent
to 1 modulo 3, and C(vj) = 12 otherwise. We will define C on Rj+1 differently
according to the congruence of j modulo 3. The following can easily be checked:

(∗) No proper C-coloring can use color 3 on vi for each i ≤ j congruent to 1
modulo 3.

If j ≡ 0 (mod 3), let g be a size function on Rj with g(vj+1) = f(vj+1)− 1,
and let g agree with f elsewhere. Since size(g) < χSC(Rj), Rj is not g-choosable.
Let C′ be an uncolorable g-assignment with C′(vj) = 12 and 3 6∈ C′(vj+1). Define
C on Rj+1 by letting C equal C′, except that we append color 3 to the list for
vj+1. By (∗), any proper C-coloring cannot use color 3 on vj−2. Therefore, since
C(vj) = 12, colors 1 and 2 must be used on vj−2 and vj , leaving only color 3 to
be used on vj−1. Therefore, color 3 is unavailable on vj+1, and we must color
Rj from C′, which is not possible.

If j ≡ 1 (mod 3), let g be as in the previous paragraph, and let C′ be an
uncolorable g-assignment with 4 6∈ C′(vj+1). Any proper C-coloring cannot use
color 3 on vj by (∗). Therefore color 4 is used on vj , and hence is unavailable
on vj+1. So we must color Rj from C′, which is not possible.

Finally, if j ≡ 2 (mod 3), let g be a size function on Rj+1 with g(vj+1) =
f(vj+1)− 2, and let g agree with f elsewhere. Since size(g) < χSC(Rj+1), Rj+1
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is not g-choosable. Let C′ be an uncolorable g-assignment such that neither
color 1 nor color 2 appears on C′(vj+1). Define C on Rj+1 by letting C equal
C′, except that we append colors 1 and 2 to the list for vj+1. By (∗), A proper
C-coloring must not use color 3 on vj−1. Therefore, since C(vj) = 12, colors 1
and 2 must be used on vj−1 and vj and are therefore unavailable to be used on
vj+1. So we must color Rj+1 from C′, which is not possible. �

3 Theta Graphs and the Petersen Graph

The authors of [1] asked about the choice number of the Petersen graph. We
will need the following result. By a theta graph, θk1,k2,k3

, we mean a simple
graph consisting of two vertices connected by three internally vertex disjoint
paths, having k1, k2, and k3 internal vertices, respectively, 0 ≤ k1 ≤ k2 ≤ k3.
Recall that we denote the greedy bound, the sum of the number of vertices and
edges, by GB, which in this case is 2(k1 + k2 + k3) + 5.

Theorem 6. χSC(θk1,k2,k3
) =

{
GB−1, if k1 = k2 = 1 and k3 is odd
GB, otherwise.

Proof. Removing a vertex from a theta graph leaves either a tree or a cycle with
pendant paths, both of which are sc-greedy. Hence by Lemma 2, it remains to
determine τ(θk1,k2,k3

). If f is a non-simple size function with size(f) = GB−1 =
2(k1 + k2 + k3) + 4, then f ≡ 2, since the vertex set has size k1 + k2 + k3 + 2.
However, by a well-known result in [2], the only theta graphs which are 2-
choosable have k1 = k2 = 1 and k3 odd. �

To show a graphG is sc-greedy, by Lemma 2 it suffices to show for any vertex
v of G that G− v is sc-greedy, and then show that there is no non-simple choice
function of size one less than the greedy bound. The same of course applies to
G− v, and so we get a recursive procedure whereby we remove vertices from G
until we get to graphs we know are sc-greedy, and at each stage we show that
there are no non-simple choice functions of size one less than the greedy bound.

The following will be important in the proof below: Odd cycles are not 2-
choosable, because the list assignment with all lists equal to 12 has no proper
coloring. Moreover, this implies that if we assign lists 12 to all vertices of an
odd cycle but one, which gets list 123, then color 3 must be used on that vertex.

Theorem 7. The Petersen Graph is sc-greedy; that is, it has sum choice number
25.

Proof. Denote the Petersen graph by P , let Q denote P minus a vertex, and let
R denote Q minus a vertex of degree 2. The greedy bound is 25 for P , 21 for
Q, and 18 for R.

Recall that appending a vertex to a sc-greedy graph produces a sc-greedy
graph by the comment following Lemma 3. For any vertex v ∈ V (R), R − v
is either a sc-greedy theta graph or a cycle with pendant paths, and hence is
sc-greedy. Moreover, for any vertex v ∈ V (Q) of degree 3, Q − v is a sc-greedy
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P RQ

Figure 3: The graphs P , Q, and R

theta graph with pendant edges. Thus it remains to consider non-simple size
functions of size one less than the greedy bound on each of P , Q, and R.

The only non-simple size functions of size 17 on R assign list size 2 for all
but one vertex, and hence there is a 5-cycle all of whose list sizes are 2, which
is not colorable. The only non-simple size functions of size 20 on Q assign list
size 2 to all but two vertices v and w, both having degree 3. It can be checked
that there is a 5-cycle avoiding any pair of adjacent vertices, and hence if v and
w are adjacent, then there is a 5-cycle all of whose list sizes are 2, which is not
colorable. If, on the other hand, v and w are not adjacent, then they must be
at distance two from each other. Let x denote their common neighbor. It can
be checked that there exist 5-cycles C1 and C2 with v in C1, but not C2, w in
C2, but not C1, and x not in either. Let f be a non-simple size function of size
20, and create an f -assignment C with C(v) = 123, C(w) = 124, C(x) = 34, and
let any other vertex have list 12. These lists force color 3 on v and color 4 on
w. Hence there is no proper C-coloring because C(x) = 34.

Thus it remains to consider non-simple size functions of size 24 on P . Any
such size function assigns list size 3 to four vertices and list size 2 to all others.
Let H denote the subgraph induced by the vertices assigned list size 3. We
consider cases according to the possibilities for H.

If H is a path, P4, then it can be checked that there exists a 5-cycle all of
whose list sizes are 2, which is not colorable. The other possibilities are shown
in Figure 4 along with uncolorable list assignments. The vertices of H are
indicated with solid circles, and vertices with no list specified can have any list.
Note that by symmetry, these pictures give the only layouts of H that need be
considered. It is straightforward for the reader to check that these assignments
are uncolorable. �

4 Complete bipartite graphs

Let f and G be given, and let C be an f -assignment. Let Y be an independent
set in G, and let X be the subgraph of G induced by the vertices not in Y . Let
c be a proper CX -coloring. For any y ∈ Y , c[N(y)] is the set of colors used by
c on N(y), the neighborhood of y. We will say c is blocked by Y if there is a
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Figure 4: Uncolorable list assignments for Theorem 7

vertex y ∈ Y such that C(y) ⊂ c[N(y)]. In other words, c cannot be extended
to a proper C-coloring of all of G. We then have the following.

Lemma 8. Let G, f , C, X, and Y be as above. Then G is C-colorable if and
only if there exists a proper CX-coloring which is not blocked by Y .

The proof is straightforward. It then follows from the definition of choosabil-
ity that G is f -choosable if and only if for every f -assignment C, some proper
CX -coloring is not blocked by Y .

We can apply these ideas to the computation of the sum choice number of the
complete bipartite graphKp,q, p ≤ q. LetX and Y denote the partite sets of size
p and q, respectively, with X = {x1, . . . , xp}. Let α(p, q) be the minimum size of
a choice function f with f(Y ) = {2}, let β(p, q) be the minimum size of a choice
function f with f(Y ) ⊂ {2, . . . , p}, and let γ(p, q) be the minimum size over all
other choice functions f . Clearly, χSC(Kp,q) is given by the minimum of these
three values. By the ideas in the proof of Lemma 2, γ(p, q) = χSC(Kp,q−1)+p+1.
We will use the blocking idea to compute α(p, q) for a fixed p. Let f be a size
function on Kp,q with f(Y ) = {2}, and let C be an f -assignment. Since X is an
independent set, the collection of all proper CX -colorings can be identified with
all p-tuples (a1, . . . , ap), ai ∈ C(xi) for each i = 1, . . . , p. Since N(y) = X for
every y ∈ Y , the set c[N(y)] becomes c[X ] for each y, and a proper CX -coloring
c is blocked if and only if C(y) ⊂ c[X ] for some y ∈ Y .

The sum choice number of K2,q was determined in [1]. We provide a some-
what similar proof here which will generalize to K3,q.
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Theorem 9 (Berliner et al.). The sum choice number of K2,q is given by

χSC(K2,q) = 2q +min{l+m : q < lm, with l,m ∈ N}.

Proof. We will compute α(2, q) and then show α(2, q) ≤ γ(2, q). Note that
α(2, q) = β(2, q). Fix positive integers l and m. Consider a size function f on
K2,q with f(x1) = l, f(x2) = m, and f(Y ) = {2}. Using the blocking idea, if C
is an f -assignment such that there exists a color a in C(x1)∩C(x2), then we get
a proper C-coloring by coloring x1 and x2 with a, since there can be no 2-set
contained in {a}. If the lists onX are disjoint, then there are a total of lm proper
colorings from the lists on X , and each vertex of Y can be used to block exactly
one of them. Thus if q < lm, there is always some proper coloring not blocked,
whereas if q ≥ lm, then there exists a list assignment blocking every proper
coloring. We conclude that α(2, q) = 2q +min{l+m : q < lm, with l,m ∈ N}.

We will now show α(2, q) ≤ γ(p, q) = χSC(K2,q−1)+ 3 by induction. For the
base case, α(2, 1) = 5 = χSC(K2,0) + 3. Now assume the inequality holds for
q − 1. Then χSC(K2,q−1) = α(2, q − 1). Hence the inequality for q holds if and
only if M ≤ N+1 where M = min{l+m : q < lm} and N = min{l+m : q−1 <
lm}, with both minima taken over positive integers. Pick (l∗,m∗) giving the
minimum, N . Then q < l∗m∗+1 ≤ l∗(m∗+1). HenceM ≤ l∗+(m∗+1) = N+1.
�

The proof above and Lemma 1 combine to give a characterization of choos-
ability for K2,q. Let u = |f−1(1)∩V (Y )| and d = |f−1(2)∩V (Y )|. It is straight-
forward to show that K2,q is f -choosable if and only if d < (f(x1)−u)(f(x2)−u).

Corollary 10. Explicitly, the sum choice number of K2,q is given by

χSC(K2,q) = 2q + 1 + b
√
4q + 1c.

Proof. We compute α(2, q) explicitly. Suppose (l,m) = (l, l+ t) for t > 1. Then
if q < lm, we have q < l(l + t) ≤ l2 + lt+ t − 1 = (l + 1)(l + t− 1). Hence the
minimum, α(2, q), must occur at (l,m) of the form (l, l) or (l, l + 1). Suppose
(l∗,m∗) gives the minimum. Then l∗ must satisfy (l∗−1)l∗ ≤ q < l∗(l∗+1) and
m∗ must satisfy (m∗ − 1)2 ≤ q < (m∗)2. The second inequality is equivalent to
m∗−1 ≤ √

q < m∗, and so m∗ = b√qc+1. To find a similar expression for l∗, let

g(x) = (
√
4x+ 1−1)/2. This function is increasing and satisfies g(x(x+1)) = x

for x ≥ 0. Applying it to the first inequality gives l∗− 1 ≤ g(q) < l∗. Therefore,
l∗ = bg(q)c+ 1.

Thus χSC(K2,q) = 2q + 2 + b√qc + bg(q)c, and this quantity is equal to
2q+1+ b√4q + 1c. To see this, let r = b√4q + 1c and s = b√4qc. If r = s it is
easy to check that the two quantities are equal by considering r odd and even
separately. If r = s + 1, then 4q + 1 is an odd perfect square, hence we need
only check that the two quantities are equal for odd r, which is easily seen to
be true. �

These same techniques can be used to find the sum choice number of K3,q.
Let f be a size function on K3,q satisfying f(Y ) ⊂ {2, 3}, f(x1) = l, f(x2) = m,
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and f(x3) = n, with 0 < l ≤ m ≤ n, and let t = |f−1(3) ∩ V (Y )|. We will
denote this by f = (l,m, n : t)q. When we use this notation it will be implicit
that f(Y ) ⊂ {2, 3}.

We provide an example here to motivate the proof of Theorem 11. In the
proof of Theorem 9, we considered any size function f satisfying f(x1) = l,
f(x2) = m and f(Y ) = {2}. For the sake of illustration, suppose that l = 2 and
m = 3. The only f -assignment of interest has disjoint lists on x1 and x2, say
C(x1) = 12 and C(x1) = 345. We could be certain that every proper coloring is
blocked provided we assign the lists 13, 14, 15, 23, 24, 25 on Y . If any of these
lists is missing, then there exists a proper C-coloring. Hence we conclude that
K2,q is f -choosable if and only if q < 6.

For K3,q things are complicated by the fact that there are now list assign-
ments of interest where the lists are not all disjoint. Consider the size function
(4, 4, 4 : 0)q. If we put lists 1234, 5678, and abcd on the vertices of X , it turns
out that 16 2-sets is the minimum number needed to block every proper coloring
of X , namely all 2-sets with one element coming from {1, 2, 3, 4} and the other
from {5, 6, 7, 8}. If instead we put lists 1234, 1256, and 3456 on X , then only 12
2-sets are needed to block every proper coloring, namely 13, 14, 15, 16, 23, 24,
25, 26, 35, 36, 45, and 46. It turns out that theseX-lists are worst possible in the
sense that they require the least number of 2-sets to block every proper coloring.
That is, regardless of the collection of size 4 lists we put on X , if there are less
than 12 vertices in Y , then there is always a proper coloring of the entire graph.
Hence we conclude that K3,q is (4, 4, 4 : 0)q-choosable if and only q < 12. By
finding the worst possible lists for any l ≤ m ≤ n we get a quantity, q∗(l,m, n),
which gives the minimum value of q such that K3,q is not (l,m, n : 0)q-choosable.
Thus we conclude that α(3, q) = 2q + min{l + m + n : q < q∗(l,m, n)}, with
the minimum taken over l,m, n ∈ N. Certain properties of q∗(l,m, n) will allow
us to show that α(3, q) ≤ β(3, q), and a similar argument to the one used in
Theorem 9 will show α(3, q) ≤ γ(3, q).

Theorem 11. The sum choice number of K3,q is given by

2q +min{l+m+ n : q < q∗(l,m, n),with l,m, n ∈ N, l ≤ m ≤ n},
where q∗(l,m, n) is given by lm − b(l + m − n)2/4c if n ≤ l + m, and by lm
otherwise.

Proof. We will first compute α(3, q), then show β(3, q) = α(3, q), and finally
show that α(3, q) ≤ γ(3, q). Fix positive integers l,m, and n, with l ≤ m ≤ n.
Consider the size function f = (l,m, n : 0)q, and let C be an f -assignment.
We will determine the minimum number of 2-sets needed to block every proper
CX -coloring. If there exists a color a in C(x1) ∩ C(x2) ∩ C(x3), then we get a
proper C-coloring by coloring x1, x2, and x3 with a, since there can be no 2-set
contained in {a}. So assume there is no color in common to all the lists on X .
In this case, CX has the following form:

C(x1) = a1 . . . ak1
b1 . . . bk2

c1 . . . ck4
,

C(x2) = a1 . . . ak1
d1 . . . dk3

e1 . . . ek5
,

C(x3) = b1 . . . bk2
d1 . . . dk3

f1 . . . fk6
.
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Colors with different names are distinct, and some of the ki may be zero. In
order to block each proper coloring, we require all 2-sets of the forms aibj ,
aidj , aifj , bidj , biej, cidj , where i and j range over all possible values. The
sets remaining unblocked are of the form {ci, ej , fk}. To block these with the
minimum number of 2-sets, add to the collection all 2-sets of the forms ciej ,
cifj , or eifj , whichever gives the least number. In total, a smallest collection of
2-sets must have k1n+k2(m−k1)+k3(l−k1−k2)+min{(l−k1−k2)(m−k1−
k3), (l − k1 − k2)(n− k2 − k3), (m− k1 − k3)(n− k2 − k3)}, which simplifies to
min{δ(l,m, n, k1), δ(l, n,m, k2), δ(m,n, l, k3)}, where δ(x, y, z, w) = xy + w(z −
x− y + w).

We now minimize this over all possible CX -assignments to find the list assign-
ment requiring the least number of 2-sets to block every proper coloring. The
minimum number of 2-sets needed in this case will be denoted by q∗(l,m, n),
which in fact gives the minimum value of q such that K3,q is not (l,m, n : 0)q-
choosable. To determine a formula for q∗(l,m, n), we determine the minimum
of the expression in the previous paragraph over all nonnegative integers k1,
k2, and k3 satisfying l ≥ k1, k2 ≥ 0 and m ≥ k3 ≥ 0. Note that δ(l,m, n, k1)
is a quadratic function in k1, and a simple analysis shows that the minimum
occurs at k1 = b(l + m − n)/2c for n ≤ l + m and k1 = 0 for n > l + m. A
similar analysis applies to the other two delta quantities, and it can be checked
that the minimum obtained from each of the three delta quantities is equal to
lm − b(l + m − n)2/4c for n ≤ l + m and lm for n > l +m. This quantity is
q∗(l,m, n). To summarize, with q∗ as mentioned, we have

α(3, q) = 2q+min{l+m+n : q < q∗(l,m, n), with l,m, n ∈ N, l ≤ m ≤ n}.

Now we show β(3, q) = α(3, q). Note that this is clearly true when q = 0. For
q > 0 we show that K3,q is not g-choosable for any function g = (l0,m0, n0 : t)q
of size α(3, q) − 1 with t > 0. We will assume on the contrary that K3,q is
g-choosable, and construct a sequence of size functions hi = (li,mi, ni : t− i)q
for i = 0, . . . , t (with h0 = g), such that if K3,q is hi-choosable, then it is also
hi+1-choosable, and then show that K3,q is in fact not ht-choosable, thereby
contradicting our assumption that it is g-choosable. Let di = |h−1

i (2) ∩ Y |.
We may assume that n0 > 1 as otherwise g must equal (1, 1, 1 : t)q, and K3,q

is not (1, 1, 1 : t)q-choosable for q > 0 and any t. Let i0 = n0 − m0 provided
t ≥ n0−m0, and otherwise let i0 = t. For i = 1, . . . i0, let li = l0, mi = mi−1+1,
and ni = n0. Let i1 = i0 + 1 if l0 = 1, and let i1 = i0 if l0 > 1. If l0 = 1, let
li1 = 2, mi1 = mi0 , and ni1 = ni0 . For j ≥ 1, let li1+j = li1 , mi1+j = mi1+bj/2c
and ni1+j = ni1 + dj/2e.

Now, for l,m, n ∈ N one can easily compute that q∗(l,m, n) is strictly greater
than both q∗(l − 1,m, n) and q∗(l,m− 1, n), and if n < l +m, then q∗(l,m, n)
is strictly greater than q∗(l,m, n − 1). Note that we have arranged it so that
for each i = 1, . . . , t, li ≤ mi ≤ ni, and for i = i1, . . . , t, ni < li + mi. Let
qi = q∗(li,mi, ni). By assumption, K3,q is h0-choosable. Now let 0 ≤ i < t
and assume K3,q is hi-choosable. Then di < qi. Thus we have di+1 = di + 1 <
qi + 1 ≤ qi+1, by the strict monotonicity of q∗ in each argument. Hence K3,q
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is also hi+1-choosable. Thus K3,q is ht-choosable and of size α(3, q)− 1. Since
h−1
t (3) = ∅ this contradicts the definition of α(3, q), and so we have obtained

our contradiction.
Finally, we show by induction that α(3, q) ≤ γ(3, q) = χSC(K3,q−1) + 4.

For the base case, α(3, 1) = 7 = χSC(K3,0) + 4. Assume the inequality holds
for q − 1. Then χSC(K3,q−1) = α(3, q − 1). Hence the inequality for q holds
if and only if M ≤ N + 2 where M = min{l + m + n : q < q∗(l,m, n)}
and N = min{l + m + n : q − 1 < q∗(l,m, n)}, with both minimums taken
over positive integers. Pick (l∗,m∗, n∗) giving the minimum, N . Then q <

l∗m∗ − b (l∗+m∗

−n∗)2

4 c + 1 ≤ l∗(m∗ + 1) − b (l∗+(m∗+1)−(n∗+1))2

4 c. Hence M ≤
l∗ + (m∗ + 1) + (n∗ + 1) = N + 2. �

Corollary 12. Explicitly, the sum choice number of K3,q is given by

χSC(K3,q) = 2q + 1 + b
√
12q + 4c.

Proof. We compute α(3, q) explicitly. We first show that to determine the
minimum α(3, q) it suffices to consider only those (l,m, n) of the form (l, l, l),
(l, l, l + 1), and (l, l + 1, l + 1). Note that by definition, q∗(l,m, n) = lm for
n ≥ l + m + 1, and since q∗(l,m, l + m − 1) = lm as well, we only need to
consider n < l+m. That is, for all (l,m, n) that need to be considered, we have
q∗(l,m, n) = lm − b(l + m − n)2/4c. Suppose first that (l,m, n) is such that
n− l > 1 and l, m and n are all distinct. Then

q∗(l + 1,m, n− 1) = (l + 1)m− b(l +m− n+ 2)2/4c
= (l + 1)m− b(l +m− n)2/4c − (l +m− n)− 1

= q∗(l,m, n) + n+ l − 1

> q∗(l,m, n).

Similar computations apply if l, m, and n, are not distinct. Namely q∗(l, l,m) <
q∗(l, l+1, n−1), and q∗(l,m,m) < q∗(l+1,m−1,m). We conclude that α(3, q)
is minimized by (l,m, n) satisfying n− l ≤ 1.

Let (l∗,m∗, n∗) give the minimum. Define functions g1(x) = (
√
12x+ 4 −

2)/3, g2(x) = (
√
12x+ 4−1)/3, and g3(x) =

√
12x/3. Note that these functions

are increasing for x ≥ 0 and satisfy g1(q
∗(l, l + 1, l + 1)) = g2(q

∗(l, l, l + 1)) =
g3(q

∗(l, l, l)) = l for all l ∈ N. Now (l∗,m∗, n∗) must satisfy

q∗(l∗ − 1, l∗, l∗) ≤ q < q∗(l∗, l∗ + 1, l∗ + 1),
q∗(m∗ − 1,m∗ − 1,m∗) ≤ q < q∗(m∗,m∗,m∗ + 1),
q∗(n∗ − 1, n∗ − 1, n∗ − 1) ≤ q < q∗(n∗, n∗, n∗).

Applying g1 to the first inequality, g2 to the second, and g3 to the third gives
l∗ = bg1(q)c+ 1, m∗ = bg2(q)c+ 1, and n∗ = bg3(q)c+ 1.

Thus χSC(K3,q) = 2q + 3 + g1(q) + g2(q) + g3(q), and this quantity is equal
to 2q + 1 + b√12q + 4c. To see this, let r = b√12q + 4c and s = b√12qc. If
r = s it is easy to check that the two quantities are equal by considering the
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cases r ≡ 0, 1, 2 modulo 3 separately. If r = s + 1, then 12q + 1 is a perfect
square not divisible by 3, hence we need only check that the two quantities are
equal only for r ≡ 1, 2 modulo 3, which is easily seen to be true. �
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