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Searching

We’ll look at several ways of searching through a list to see if it contains a specific item.

Linear search

The simplest approach to searching is to loop through the list and compare each item of the list to see if it’s the
item we want. This is called a linear search and it runs in O(n) time. Here is the code:

result = False
for x in L:

if x == item:
result = True
break

The break isn’t strictly required, but it can save time. Once the item is found, there is no need to do any further
checking. Here is the linear search coded as a function:

def search:
for x in L:

if x == item:
return True

return False

A common mistake people make when coding this is to use an if/else. The problem with doing this is be that if
the first item is not a match, the function would return False without ever checking anything else in the list.
Below is a variation on the linear search that returns the location of the item and −1 if it is not in the list:

result = -1
for i in range(len(L)):

if L[i] == item:
result = i
break

Python’s in operator when used on a list uses a linear search, as does Java’s contains method for ArrayLists.

Binary search

If the list is already sorted, there is a much faster algorithm, called binary search. Let’s look at it with an
example. Suppose we’re looking for the item w in the list below.

[a,b,b,c,e,f,h,h,h,k,m,o,p,p,q,q,q,s,t,u,w,y,z,z]

We start by looking at the middle item. There are 24 items in the list, and the middle item is the 12th one,
which is o. Comparing w to o, we see w is greater. Since the list is in order, this tells us that if w is in the list, it
must be in the second half of the list, between o and z. We can throw out the entire first half of the list from our
search. We next repeat the process on the second half of the list. We look at the middle item of the second half
of the list. This turns out to be s, and we compare it to w. We see that w is greater, so that means that w must be
in the second half of this part of the list. This allows us to throw out the first half of this part of the list, which is
1/4 of the original list. We repeat the process again on the portion of the list from t to z. The midpoint of this is
w, which is the item we are looking for, so the search ends.

Binary search works this way in general. At each step we are look at a portion of the list. We find the middle
element of that portion and compare that to the element being searched for. If they are equal we are done.
Otherwise, we throw out half of the portion being searched and repeat the search on the other half. This
continuous throwing away of half of the list means that we very quickly zero in on the location of the item we’re
search for.
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For instance, if we have 1024 items, after the first step we will be down to 512 items to search. After the second
step, it will be 256. It will continue through 128, 64, 32, 16, 8, 4, 2, 1, meaning that we need at most 10 steps
to find the item or determine it is not there. Upping the list size to 1,000,000 items, only increases the number
of steps to 20. A list size of 1 billion corresponds to a max of 30 steps. This is a logarithmic algorithm, O(log n).
Even with a huge number of items, the number of steps stays pretty small. Here is the code for the algorithm:

def binary_search(L, item):
lo = 0
hi = len(L) - 1
while hi >= lo:

mid = (hi + lo) // 2
if L[mid] == item:

return True
elif L[mid] < item:

lo = mid + 1
else:

hi = mid - 1
return False

We use variables called lo and hi to keep track of which portion of the list we are searching, with lo starting out
at the first element and hi at the last. We use mid=(hi+lo)//2 to find the index of the item in the middle of the
portion of the list being searched. The // operator rounds down in case the division doesn’t come out evenly. In
Java, you could just use mid=(hi+lo)/2.1 The way we throw out one half of the list and just look at the other
half is by changing the lo or hi variables based on the result of the comparison. If we get to a point where the
lo and hi variables equal or even cross over each other, that means the item being searched for is not in the list.
Let’s look at how the lo, mid, and hi variables evolve as we search the list given earlier for the item u. At the
start, lo=0 and hi=23. We compute mid via (23+0)//2, which is 11.

0 11 23
a b b c e f h h h k m o p p q q q s t u w y z z
^ ^ ^
lo mid hi

Since t is greater than o, we set lo equal to mid+1, which means we now have lo=12 and hi=23. We recompute
mid by doing (23+12)//12, which is 17.

12 17 23
a b b c e f h h h k m o p p q q q s t u w y z z

^ ^ ^
lo mid hi

Since t is greater than s, we set lo equal to mid+1, which means lo=18 and hi=23. The new value of mid is 20

18 20 23
a b b c e f h h h k m o p p q q q s t u w y z z

^ ^ ^
lo mid hi

Since t is less than u, we set hi equal to mid-1, so lo=18 and hi=19. We recompute mid, which comes out to 18.
At this point, the value at mid is t, which is what we’re looking for, and the search ends.

18 19
a b b c e f h h h k m o p p q q q s t u w y z z

^ ^
mid=lo hi

11 A safer approach is to use lo+((hi-lo)/2) which avoids a potential integer overflow problem in (hi+lo)/2. This is important in Java, but
not Python, where integers can’t overflow.
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If you’re implementing this yourself, there are some small details that are easy to mess up. For instance, the loop
condition needs to be hi >= lo and not hi > lo. Using > instead of >= will lead to a wrong result in certain
cases. Also, it’s important to use lo=mid+1 and not lo=mid, as there are certain lists that will cause us to get
stuck in an infinite loop if using the latter.

Both Python’s in operator and Java’s contains method use a linear search since they can’t assume that the given
list is sorted. If you want to use a built-in binary search in Java, java.util.Collections, has one. Python
doesn’t have one, but the bisect library does have code that can help with implementing it.

Hashing

Linear search is an O(n) algorithm and binary search is O(log n). We can actually get an O(1) search using
hashing. A hash function is a function that always returns an output in a restricted range. A simple example is
the function h(x) = x mod 100 that takes any integer as input and returns an integer limited to the range from 0
to 99. In particular, it returns the last two digits of the integer. For instance, h(1453) = 53.

We can use hash functions as the basis of a data structure that can store things efficiently, specifically, having
O(1) running time to determine whether or not an item is in the collection, as long as the hash function is pretty
good and there are not too many things stored in the collection. If the hash function is poor or if the collection is
too large, then performance can degenerate to O(n).

The basic idea is we store the data values using a list of lists, one list for each possible output value of the hash
function, with that list storing all the data values that hash to that value. For instance, if we use
h(x) = x mod 100 as our hash function, and we want to store 133, 977, 233, 114, 109, 1209, 9, and 46, we
would end up with 100 lists, corresponding to the hash values 0 to 99. Most of those would end up being empty
lists. Below are all the nonempty lists:

hash list
9 [109, 1209, 9]

14 [114]
33 [133, 233]
46 [46]
77 [977]

When adding a new value, we compute its hash and then add the value to the list at the location given by that
hash. To check to see if a value is there or not, we compute its hash and search the list at that hash for the value.
If the hash function used is any good, then it will spread all the values evenly around the hashes, meaning no
list will have more than a few things in it, giving us O(1) searching time.

The approach described above, where we use lists of lists, is called the chaining approach. There is another
approach called probing that you might run into, but we won’t cover it here. The hash function used as an
example above isn’t a particularly good one. A better one is h(x) = ax mod b, where a and b are relatively large
primes. For storing strings, floats, and other data types, there are other good hash functions out there.

Python’s set data type uses hashing, as does Java’s HashSet. Python’s dictionaries and Java’s HashMap use
hashing to store the keys.

Comparing the searches

Linear search is simple to code and understand, and it always works. But it’s also the slowest of the searches.
Binary search is considerably faster if the list is already sorted. For instance, in a list of one billion items, a linear
search will need to check all one billion items in the worst case, while binary search will only need to check 30
items. However, if you’re just searching through a list once, and the list isn’t sorted, then binary search will be
slower than a linear search since we would first have to sort the array, which takes at minimum O(n) time. If
you plan on doing multiple searches, then it is worth spending the time to sort the list in order to use the binary
search.
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As long as the hash function used is good and the collection is not overly large, the hash-based approach is
usually the fastest. One drawback of the hashing approach is that the hash function will usually scramble the
order that items are added to the set, which may not be desirable. However, Java has a class called
LinkedHashSet that preserves the order.

Let’s look at a comparison of the three approaches for the problem of finding all the words in a wordlist that are
also words in reverse. This includes not only palindromes, but also a word such as rats that becomes the real
word star when reversed. Here is Python code that does this and times it, given a list of words.

def timer(words):
start = time.time()
L = [w for w in words if w[::-1] in words]
print(time.time() - start)

Be sure to import the time library. Try first passing it a list and then a set, like the ones created below.

word_list = [line.strip() for line in open('wordlist.txt')]
word_set = set(line.strip() for line in open('wordlist.txt'))

You’ll need a wordlist file in order to use this. There are many that can be found online. To use binary search,
replace the if w[::-1] in words part of the code with if binary_search(words, w[::-1]). When I tested it
on my laptop with a list of about 78,000 words, the set approach took around .03 to .04 seconds, the binary
search approach took around .3 to .4 seconds, and the list approach took over a minute. In this example, it was
about a 10 times speedup to use hashing over our hand-coded binary search, and it’s about a 2000 times
speedup to use hashing over a linear search.


