
Math 43 Review Notes

[Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people
difficulty.]

Dot Product

If v = (v1, v2, v3) and w = (w1, w2, w3), then the dot product of v and w is given by

v ·w = v1w1 + v2w2 + v3w3

For example, if v = (4, 7, 6) and w = (2, 3, 9), then v ·w = 8 + 21 + 54 = 83. Notice that the answer is always a
number.

Row Operations

There are three types of row operations:

(1) Adding a multiple of one row to another.
(2) Switching two rows.
(3) Multiplying a row by a constant.

There’s a modification of (1) that you can use to avoid fractions. Namely, if you were going to do the operation
row2− (3/7)row1, you could instead use 7row2− 3row1. This is just the first operation multiplied by the
denominator 7.

Any of these operations can be used to solve Ax = b, and in finding inverses, but to find the LU factorization only
use operations of type 1 (and not the modification).

Echelon and Reduced Row Echelon (rref) forms

A pivot is the first nonzero entry in a row which has no other pivots directly above it.

You can identify the echelon form of a matrix by the following properties:

(1) Below each pivot are zeros.
(2) Each pivot is to right of the one above it.
(3) Rows of all zeros (if any at all) must come at the end.

Echelon form is like a lower triangular form for matrices which aren’t necessarily square. The reduced row echelon
form of a matrix is an echelon form, but now each pivot must be a 1 and there must be zeroes above the pivots as
well as below them.

Echelon Forms




x x x
0 x x
0 0 x







x x x x
0 x x x
0 0 0 x







x x x x
0 x x x
0 0 x x
0 0 0 0







0 x x
0 0 x
0 0 x
0 0 0




RREF of above




1 0 0
0 1 0
0 0 1







1 0 x 0
0 1 x 0
0 0 0 1







1 0 0 x
0 1 0 x
0 0 1 x
0 0 0 0







0 1 0
0 0 0
0 0 1
0 0 0




Elimination Matrices

For an operation of the form rowi−m · rowj you get the elimination matrix Eij from the identity matrix by
replacing entry (i, j) (that’s row i, column j) with −m. If you do row operations in the order we’ve done in class
(use the pivot in the first row to get zeroes below it, then use the pivot in the second row to get zeroes below it,
etc.), then Eij will have its −m in the same location as the entry that you were trying to zero out. Note that if you
did the operation rowi+m · rowj, Eij would have a +m instead of −m.

The matrix Eij has the effect that Eij times any matrix A subtracts m times row j from row i of A.

1



LU Factorization

If you do a sequence of row operations to reduce a matrix A into lower triangular form U , it can be written as
something like E32E31E21A = U . Solving this for A gives A = (E21E31E32)

−1U . That big inverse is what we call
L, and we find it similarly to finding the elimination matrices. To find L, start with the identity matrix. For each
operation of the form rowi−m · rowj replace the (i, j) entry with +m (note signs are the opposite of what they
are for elimination matrices since L is an inverse of elimination matrices.) Again, if you do the operations in the
order we’ve done in class, then whatever position you’re trying to get a zero in, the corresponding entry in L gets
replaced by m.

For example let

A =




1 1 1
2 3 4
3 −5 14




Reduce A to lower triangular form, indicating the elimination matrices and find the LU Factorization of A.




1 1 1
2 3 4
3 −5 −5


 row2−2row1→




1 1 1
0 2 3
3 −5 −5


 row3−3row1→




1 1 1
0 2 3
0 −8 −8


 row3+4row2→




1 1 1
0 2 3
0 0 4




E21 =




1 0 0
−2 1 0
0 0 1


 E31 =




1 0 0
0 1 0
−3 0 1


 E32 =




1 0 0
0 1 0
0 4 1


 L =




1 0 0
2 1 0
3 −4 1


 U =




1 1 1
0 2 3
0 0 4




Using LU Factorization To Solve Ax = b

We can write Ax = b as LUx = b. Letting Ux = c we see that we can solve Ax = b in two steps:

(1) Solve Lc = b.
(2) Solve Ux = c.

Each step is easy, only requiring back substitution and no row operations. For example, use the LU Factorization
in the above example to solve Ax = b with b = (2, 5, 6).

(1) First solve Lc = b.




1 0 0
2 1 0
3 −4 1







c1
c2
c3


 =




2
5
6




Write this as three equations

c1 = 2
2c1 + c2 = 5
3c1 − 4c2 + c3 = 6

Solve to get c1 = 2, c2 = 1, c3 = 4.

(2) Then solve Ux = c.




1 1 1
0 2 3
0 0 4







x1

x2

x3


 =




2
1
4




Write this as three equations

x1 + x2 + x3 = 2
2x2 + 3x3 = 1
4x3 = 4

Solve to get x1 = 2, x2 = −1, x3 = 1.
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PA=LU Factorization

If you try to to the LU factorization and find that you can’t do it without a row exchange, then use the PA = LU
factorization. You start with row operations just like in the LU factorization, but as soon as you see you have to
flip two rows, flip them instead in the original matrix and start over again with row operations on the this ”new”
A to get L and U . Put your row flips into the matrix P . You get P by starting with the identity matrix and
flipping the same rows of it that you flipped during your row operations (i.e., if you flipped rows 2 and 3 during row
operations, then P is the identity matrix with rows 2 and 3 flipped).

For example let

A =




1 2 0
2 4 1
1 1 1




Find the PA=LU Factorization of A.




1 2 0
2 4 1
1 1 1


 row2−2row1→




1 2 0
0 0 1
1 1 1




At this point, stop and notice that the (2,2) entry is 0. This should be a pivot. We need this to be nonzero in order
to make the (3,2) entry zero, so we have to do a row exchange. Exchange rows 2 and 3 of A and start over.




1 2 0
1 1 1
2 4 1


 row2−row1→




1 2 0
0 −1 1
2 4 1


 row3−2row1→




1 2 0
0 −1 1
0 0 1




The last matrix is in lower triangular form. It is our U . We have

L =




1 0 0
1 1 0
2 0 1


 U =




1 2 0
0 −1 1
0 0 1


 P =




1 0 0
0 0 1
0 1 0




Transposes and Symmetric Matrices

To get AT , row i of A becomes column i of AT . Remember the rules for transposes:

(1) (AT )T = A
(2) (A±B)T = AT ±BT

(3) (AB)T = BTAT

(4) (A−1)T = (AT )−1

A symmetric matrix is a matrix whose entries are mirror images of each other on either side of the diagonal.
Mathematically, they are defined as matrices with A = AT .




a u v w
u b x y
v x c z
w y z d




Example: If A and B are symmetric, show ABA is symmetric.

Answer: (ABA)T = ATBTAT = ABA (using property (3) and the fact that A = AT , B = BT ). We have shown
(ABA)T = ABA, so it is symmetric.

Example: If A and B are symmetric is AB(A+B) symmetric?

Answer: [AB(A+B)]T = (A+B)TBTAT = (AT +BT )BTAT = (A+B)BA. Matrix multiplication is not
commutative so this is not necessarily the same as AB(A+B). So it is not necessarily symmetric. For example,
check that AB(A+B) and (A+B)BA are not the same with

A =

(
1 2
0 0

)
B =

(
2 3
0 0

)
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Vector Spaces and Subspaces

A vector space, roughly speaking, is a set where you can define addition and multiplication by a number in such a
way that basic algebraic rules hold (like c(v +w) = cv + cw, and a few others). Examples of vector spaces are all
vectors with 2 components, or all vectors with 3 components, etc. Another example is the set of all 2x2 matrices
(or 3x3 matrices, etc).

A subspace of a vector space is a set of some of the objects from the vector space which have to satisfy the
following two properties:

(1) if v and w are in the subspace, then v +w has to be in it, too.
(2) if v is in the subspace and c is a number, then cv must be in the subspace.

Usually the vectors in the set to be checked all have something in common or look a certain way. To show it really
is a subspace you have to check that both properties hold, in other words, check that v+w and cv have that same
thing in common. To show something is a subspace you have to use generic vectors, specific examples are not
enough. To show something is not a subspace however, specific examples are enough, just find a specific example
where one of the properties fails.

Example: Show that all vectors (b1, b2, b3) with b1 + b2 + b3 = 0 is a subspace of R3.

Answer: Examples of vectors in the subspace are (−1, 0, 1) or (3,−1,−2). These are vectors whose entries add up
to 0. This is what all vectors in the subspace have in common.

First check property 1. Let c = (c1, c2, c3) and d = (d1, d2, d3) be any two vectors where c1 + c2 + c3 = 0 and
d1 + d2 + d3 = 0. Then c+ d = (c1 + d1, c2 + d2, c3 + d3). For this to be in the subspace the entries in c+ d must
add up to 0. This is true since

(c1 + d1) + (c2 + d2) + (c3 + d3) = (c1 + c2 + c3) + (d1 + d2 + d3) = 0 + 0 = 0.

Net check property 2. Let c = (c1, c2, c3) be a vector with c1 + c2 + c3 = 0 and let n be any number. Then
nc = (nc1, nc2, nc3) is in the subspace since

nc1 + nc2 + nc3 = n(c1 + c2 + c3) = n · 0 = 0.

Since both properties hold, it is a subspace.

Example: Is the set of all vectors (b1, b2, b3) with all of the entries whole numbers a subspace of R3?

Answer: No. You can check that the first property works since adding whole numbers gives whole numbers, but
property 2 doesn’t work. For example, pick the vector b = (1, 1, 1) and let n = .5. Then nb = (.5, .5, .5) is not in
the subspace since its entries are not whole numbers.
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Nullspace

The nullspace of a matrix A, denoted N(A) consists of all vectors which are solutions to the equation Ax = 0.

Example: Find the nullspace of the following matrix:

A =




−3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4




Answer: First reduce A to rref to get

A =




1 −2 0 −1 −3
0 0 1 2 −2
0 0 0 0 0




Keep in mind that finding the nullspace is the same as solving Ax = 0, so rewrite the above matrix in equation
form.

x1 − 2x2 − x4 − 3x5 = 0
x3 + 2x4 − 2x5 = 0

Solve these for the pivot variables x1 and x3.

x1 = 2x2 + x4 + 3x5

x3 = −2x4 + 2x5

Now write

x =




x1

x2

x3

x4

x5



=




2x2 + x4 + 3x5

x2

−2x4 + 2x5

x4

x5



= x2




2
1
0
0
0



+ x4




1
0

−2
1
0



+ x5




3
0
2
0
1




The vectors at the last step are what the book calls ”special solutions”. There is one for each free variable. The
null space consists of all linear combinations of these vectors.

Solving Ax = b

Solving Ax = b consists solving Ax = 0 (i.e. finding the nullspace) plus one more step. First start by row reducing
the augmented matrix. For example let b = (−5,−5, 12) and let A be the matrix in the nullspace example above.
Row reducing the augmented matrix to rref, we get:




1 −2 0 −1 −3
0 0 1 2 −2
0 0 0 0 0

1
2
0




Notice that if the last entry in the last row were not 0, then there would be no solution, as writing this in equation
form, the last equation would be 0 = some nonzero number, which is nonsense.

Now to find the solution: First find the nullspace (which we did above) and then find a particular solution. A
particular solution is the solution you get by setting the free variables (in this case x2, x4, x5) all equal to 0. What
it works out to is just set the pivot variables equal to the entries in the last column in the augmented matrix, and
set the free variables equal to zero. Here we get x1 = 1, x3 = 2, x2 = x4 = x5 = 0. This give the particular solution
(1, 0, 2, 0, 0). Adding this to the solution to Ax = 0 (the nullspace) translates it into a solution to Ax = b. Thus
the complete solution is:

x =




1
0
2
0
0



+ x2




2
1
0
0
0



+ x4




1
0

−2
1
0



+ x5




3
0
2
0
1



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Rank, etc.
A few definitions:

(1) The rank of a matrix is the number of pivots.
(2) A matrix has full column rank if every column has a pivot.
(3) A matrix has full row rank if every row has a pivot.
(4) A pivot column is a column which contains a pivot.

To determine each of the above quantities, reduce the matrix to echelon form, from there it is easy.

Column Space

The column space of a matrix A, denoted C(A), consists of all vectors b which are solutions of Ax = b. Another
way to think of it is as all vectors which are linear combinations of the columns of A. If A is simple enough you can
determine C(A) just by looking at it, but otherwise reduce A into echelon form to determine the pivot columns.
Then C(A) is the set of linear combinations of the pivot columns of A (not the echelon form, but A itself). Another
way to determine C(A) is to reduce the augmented matrix with the last column containing entries b1, b2, . . . to an
echelon form. Here is an example:

A =




1 3 3 2
1 3 4 6
2 6 9 16




An echelon form of A found by row reduction is




1 3 3 2
0 0 1 4
0 0 0 0




From here we see that columns 1 and 3 of A are pivot columns. Thus C(A) is all linear combinations of these
columns. In other words C(A) consists of all vectors which can be written in the following form:

C(A) = a




1
1
2


+ b




3
4
9


 where a and b are any numbers.

The other way we can find C(A) is as follows: First, row reduce the following augmented matrix

A =




1 3 3 2
1 3 4 6
2 6 9 16

b1
b2
b3


 row2−row1→




1 3 3 2
0 0 1 4
2 6 9 16

b1
b2 − b1

b3


 row3−2row1→




1 3 3 2
0 0 1 4
0 0 3 12

b1
b2 − b1
b3 − 2b1




row3−3row2→




1 3 3 2
0 0 1 4
0 0 0 0

b1
b2 − b1

b3 − 2b1 − 3(b2 − b1)




For this to have a solution, the bottom right entry in the augmented matrix must be 0. This means that
b3 = 3b2 − b1 (setting the entry equal to 0 and solving for b3). Thus any vector in the column space is of the form




b1
b2

3b2 − b1




Notice that any vector from the first way of finding C(A) can be written in this form.

Full Row Rank and Full Column Rank

If a matrix has full column rank (i.e. a pivot in every column), then the following are true:
(1) There are no free variables
(2) The null space of the matrix consists only of the vector of all zeros.
(3) Ax = b has either no solution or exactly one solution.

If a matrix has full row rank (i.e. a pivot in every row), then the following are true:
(1) The number of free variables is equal to the number of columns minus the number of rows.
(2) Ax = b always has at least one solution.
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More About Ax = b

(1) If the rref of a matrix has zero rows, then it’s possible that there is no solution. If the rref has no zero rows,
then there is certainly a solution. If there are free variables, then either there’s no solution or there are infinitely
many solutions (and nothing in between). If there are no free variables, then there can’t be infinitely many
solutions. There’s either no solution or one solution in this case.

(2) If A has full row rank and full column rank, then A is a square matrix (same number of rows as columns) and
the rref of A is the identity matrix. Thus Ax = b has exactly one solution, namely A−1b, and you can find it by row
reducing A and back substitution (note that there’s no nullspace to worry about). This is the most important case.

(3) If A has full row rank and more columns than rows, then there are no zero rows in the rref, hence there is at
least one solution. However, since there are more columns than rows, there are some columns without pivots, hence
there are free variables. Thus there are infinitely many solutions.

(4) If A has full column rank with more rows than columns, then there are zero rows in the rref, thus it is possible
there is no solution. Since every column has a pivot, there are no free variables, hence there can’t be an infinite
number of solutions. Thus there is either no solution or one solution.

(5) If A has neither full row rank nor full column rank, then the rref has zero rows and there are free variables.
Thus there is either no solution or infinitely many solutions.

(6) Remember, there can never be exactly 2 or exactly 3 solutions. Zero, one, or infinitely many solutions are the
only possibilities. (It’s a good exercise to try to show why exactly 2 solutions is impossible.)

Linear Independence

A set of vectors is linearly independent if none of the vectors can be written as a linear combination of the others.
Otherwise we say the vectors are linearly dependent. Mathematically this is expressed by saying the vectors
v1,v2, . . . ,vn are linearly independent if c1v1 + c2v2 + . . .+ cnvn = 0 only when c1 = c2 = . . . = cn = 0. This is
the same as saying the matrix with these vectors as its columns has full column rank (do you know why?).

If a vector in the set can be written as a linear combination of others, for many applications it is somehow
redundant. A linearly independent set has no such redundancies, which is good.

If any of the following happens, then the vectors are linearly dependent .

(1) One vector is a multiple of another, or there is an obvious way to combine some of the columns to get another
one of the columns.

(2) One of the vectors is the zero vector.

(3) There are more vectors than entries in each vector.

If the vectors pass the above three conditions, then create a matrix with the vectors as its columns. Row reduce the
matrix to echelon form. If every column has a pivot, then the vectors are linearly independent. Otherwise they are
linearly dependent.

Examples:

Let v1 =




0
0
0


 v2 =




1
2
3


 v3 =




2
4
6


 v4 =




1
1
1


 v5 =




1
4
9


 v6 =




2
3
4


 v7 =




12
5
−2




(1) {v2, v3} are linearly dependent since v3 is twice v2.

(2) {v1, v3, v4} are linearly dependent since v1 is the zero vector.

(3) {v2, v4} are linearly independent. To see this, make a matrix whose columns are v2 and v4 and row reduce it to
an echelon form. The echelon form has pivots in every column.




1 1
2 1
3 1


 →




1 1
0 −1
0 0




(4) {v2, v4, v5, v6} are linearly dependent because there are 4 vectors, but only 3 entries in each.

(5) {v2, v4, v6} are linearly dependent. To see this, make a matrix whose columns are v2, v4, and v7 and row reduce
it to an echelon form. The echelon does not have pivots in every column.




1 1 12
2 1 5
3 1 −2


 →




1 1 12
0 −1 −19
0 0 0



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Math 43 Review Notes - Chapter 4

Orthogonal Subspaces

Recall that two vectors v and w are orthogonal (i.e. perpendicular) if their dot product v · w is 0. If we think of v
and w as arrays with only one column, then we can also write the dot product of v and w as a multiplication of
matrices, namely vTw. You might see this from time to time in the book.

We say that two subspaces V and W of a vector space are orthogonal if every vector in V is orthogonal to every
vector in W . To determine if two subspaces are orthogonal, it is enough just to check that each vector in a basis for
V is orthogonal to each vector in a basis for W . Here is an important example of orthogonal subspaces:

Example: The nullspace and row space of a matrix A are orthogonal subspaces. Remember, vectors in the
nullspace of a matrix A are vectors x for which Ax = 0, and vectors in the row space are linear combinations of the
rows of A. A small example is enough to understand why the subspaces are orthogonal. Let

A =

(
2 3 4
5 6 7

)
.

Let x = (x1, x2, x3) be in the nullspace of A. Then Ax = 0. Write this out in equation form:

2x1 + 3x2 + 4x3 = 0
5x1 + 6x2 + 7x3 = 0

Looking closely at these, we see the first equation is just the dot product of row 1 and x, and the second is the dot
product of row 2 and x. Since these are zero, the equations are saying that row 1 and row 2 are orthogonal to x. So
any combination of the rows is also orthogonal to x. Therefore we have shown that the row space and nullspace are
orthogonal.

Orthogonal Complement

The orthogonal complement of a subspace V consists of all vectors which are orthogonal to each vector in V . It
is denoted by V ⊥. Like before, to find V ⊥ it is enough to find all vectors which are orthogonal each vector in a
basis for V .

Example: Let V be the subspace which consists of all vectors x = (x1, x2, x3) which satisfy x1 + 3x2 + 2x3 = 0 (a
plane in R3). Find V ⊥.

Solution: First find a basis for V . Solve the equation defining V to get x1 = −3x2 − 2x3. Then any x in V can be
written as

x =




x1

x2

x3


 =




−3x2 − 2x3

x2

x3


 = x2




−3
1
0


+ x3




−2
0
1




So (−3, 0, 1) and (−2, 1, 0) are a basis for V . (You can check for yourself that they are linearly indendent.) Any
vector b = (b1, b2, b3) in V ⊥ is orthogonal to both of these vectors. In other words:

(b1, b2, b3) · (−3, 0, 1) = 0
(b1, b2, b3) · (−2, 1, 0) = 0

−→ −3b1 + 0 + b3 = 0
−2b1 + b2 + 0 = 0

−→ b3 = 3b1
b2 = 2b1

Therefore, plugging these into b we get

b =




b1
b2
b3


 =




b1
2b1
3b1


 = b1




1
2
3




So, V ⊥ consists of all multiples of the vector (1, 2, 3). (V ⊥ is a line in R3, perpendicular to the plane
x1 + 3x2 + 2x3 = 0.)

Example: Not only are the row space and nullspace orthogonal, but in fact they are orthogonal complements of
each other. Try to see why.

1



Make sure you understand the difference between the definitions. The first definition is about a relationship
between two subspaces: V and W are orthogonal if every vector in V is orthogonal to every vector in W . Notice
also that the only vector that can be in both V and W is 0, since it is the only vector whose dot product with itself
is 0 (i.e. it is the only vector which is perpendicular to itself).

The second definition gives a new subspace V ⊥, the orthogonal complement, which contains every single vector
which is orthogonal to all the vectors in V .

Projections

First we will look at projecting a vector b onto another vector a. One way to think about a projection is as
the“shadow” that b casts on a. Another way is to think of it as asking how much of b is in the direction of a.

The projection of b onto a is given by

p =
a · b
a · a a

The fractional term gives the percentage or fraction of a that the shadow of b takes up; in the book it is called x̂.

Example: Project b = (2, 4, 1) onto a = (3, 2, 5) and c = (3,−1,−2).

Solution: Projecting b onto a we get

p =
(2, 4, 1) · (3, 2, 5)
(3, 2, 5) · (3, 2, 5)




3
2
5


 =

19

38




3
2
5


 =




3/2
1
5/2




Projecting b onto c we get

p =
(2, 4, 1) · (3,−1,−2)

(3,−1,−2) · (3,−1,−2)




3
−1
−2


 =

0

14




3
−1
−2


 =




0
0
0




The vectors b and c are perpendicular (since their dot product is 0), hence the projection of b onto c is just 0, as
we would expect.

There’s one other way to think about projections. Instead of just projecting b onto a, think about it as is
projecting b onto the line through a. Then p is the closest vector to b which lies on the line. The vector e in the
picture is the “error” between b and p. It is just b− p.

Since a line is just a special kind of subspace, this thinking gives us a way to project a vector b onto any subspace
V . The projection will be the vector in V which is closest to b. We will consider projecting onto the column space
of a matrix A. In other words, we are looking for the vector which is a linear combination of the columns of A
which is closest to b. To do this we use the following:

P = A(ATA)−1AT

p = Pb

The matrix P is called the projection matrix. It will project any vector onto the column space of A.
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Example: Let A =




1 0
0 1

−1 −1


. Find the projection matrix P , and the projection of b = (1, 2, 3) onto the

column space of A.

Solution: Compute:

ATA =

(
1 0 −1
0 1 −1

)


1 0
0 1

−1 −1


 =

(
2 1
1 2

)

(ATA)−1 =
1

3

(
2 −1

−1 2

)

A(ATA)−1 =




1 0
0 1

−1 −1


 1

3

(
2 −1

−1 2

)
=

1

3




2 −1
−1 2
−1 −1




P = A(ATA)−1AT =




2 −1
−1 2
−1 −1




(
1 0 −1
0 1 −1

)
=

1

3




2 −1 −1
−1 2 −1
−1 −1 2




p = Pb =
1

3




2 −1 −1
−1 2 −1
−1 −1 2







1
2
3


 =




−1
0
1


 .

Orthogonal Bases

Recall that vectors are orthogonal if their dot product is 0. If in addition to being orthogonal the vectors are all
unit vectors (i.e. have length 1), then we say the vectors are orthonormal. A convenient way to say this is that
the vectors v1,v2, . . . ,vn are orthonormal if vi · vj = 0 unless i = j, in which case it equals 1.

Example: Let v1 =
1√
11




3
1
1


, v2 =

1√
6




−1
2
1


, v3 =

1√
66




−1
−4
7


.

It is easy to check that v1 · v1 = v2 · v2 = v3 · v3 = 1, and v1 · v2 = v1 · v3 = v2 · v3 = 0. So the vectors are
orthonormal.

The Gram-Schmidt Process

We say that a basis is an orthogonal basis if its vectors are orthogonal, and is an orthonormal basis if its vectors are
orthonormal. For many applications orthogonal and orthonormal bases are much easier to work with than other
bases. (Remember that a space has many different bases.) The Gram-Schmidt process gives a way of converting a
basis into an orthogonal or orthonormal basis. You start with n linearly independent vectors x1,x2, . . . ,xn and
Gram-Schmidt will create orthogonal vectors v1,v2, . . . ,vn which span the same space as the x′s. In other words,
Gram-Schmidt takes a basis for a subspace and turns it into an orthogonal basis for the same subspace.

The idea relies on projections. Start by letting v1 = x1. Then let p be the projection of x2 onto v1. Notice that
x2 − p is orthogonal to v1. So let this be v2. Notice that v1 and v2 span the same space as x1 and x2. Now
consider the projection p of x3 onto the subspace spanned by v1 and v2. Like before, x3 − p is orthogonal to both
of v1 and v2, and since v1 and v2 are orthogonal, it has a simple formula (no messy matrix calculations). Continue
projecting to get the rest of the v’s.
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Here is the process:

v1 = x1

v2 = x2 −
x2 · v1

v1 · v1
v1

v3 = x3 −
x3 · v1

v1 · v1
v1 −

x3 · v2

v2 · v2
v2

v4 = x4 −
x4 · v1

v1 · v1
v1 −

x4 · v2

v2 · v2
v2 −

x4 · v3

v3 · v3
v3

and so on . . .

To make this set of vectors orthonormal, the vectors need to be unit vectors. Remember how to do that, we divide
each vector by its length, i.e. our orthonormal vectors are

v1

‖ v1 ‖ ,
v2

‖ v2 ‖ ,
v3

‖ v3 ‖ , . . .

.
Example: Find a set of orthonormal vectors which span the same space as x1 = (1, 1, 1), x2 = (1, 2, 3), and
x3 = (4, 3, 8).

Solution: Check for yourself that the given vectors are linearly independent. Now use Gram-Schmidt to find the
corresponding orthogonal vectors v1, v2, and v3.

v1 =




1
1
1




v2 =




1
2
3


− 1 + 2 + 3

1 + 1 + 1




1
1
1


 =




−1
0
1




v3 =




4
3
8


− 4 + 3 + 8

1 + 1 + 1




1
1
1


− −4 + 0 + 8

1 + 0 + 1




−1
0
1


 =




1
−2
1




To make v1,v2, and v3 orthonormal, divide each by its length to get

1√
3




1
1
1


 ,

1√
2




−1
0
1


 ,

1√
6




1
2
1


 .

Update: (12/13/05) An easier way to find V ⊥.

This method uses the fact that the row space and nullspace of a matrix are orthogonal. To find V ⊥, first find a
basis for V . Next create a matrix A from the basis vectors by letting them be the rows of A. Then V ⊥ is the
nullspace of A. In fact, this is really very similar to the method on the first page.
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Math 43 Review Notes - Chapters 3, 5, & 6

A basis for a vector space is a collection of vectors that satisfy:

1. The vectors are linearly independent. (No redundant vectors)
2. Every element in the vector space is a linear combination of the basis vectors.

These say that a basis is a set from which you can obtain every vector in the vector space, and that this set is as
small as possible. Many properties of a vector space can be proved just by proving them for the basis vectors. A
typical basis has only a few vectors, whereas the vector space probably has infinitely many, so this is a big help.

Example: The vectors (1, 0) and (0, 1) are a basis for R2, the set of all vectors with two components. It is easy to
see that they are linearly independent, and any vector with two components can be written in terms of them. For
example,

[
7

−5

]
= 7

[
1
0

]
− 5

[
0
1

]
and in general,

[
a
b

]
= a

[
1
0

]
+ b

[
0
1

]
.

Similarly, (1, 0, 0), (0, 1, 0), and (0, 0, 1) are a basis for R3. Can you find a similar basis for Rn, the set of all vectors
with n components?

A space has many different bases. For example, given a basis, just multiply each basis vector by a constant to get a
new basis. In the above example, for instance, (2, 0) and (0, 2) are also a basis for R2. Note however that all the
bases for a space have to have the same number of vectors. This number is called the dimension of the space.

Example: Find a basis for the subspace of R3 consisting of all vectors whose components add up to 0.

Solution: Let b = (b1, b2, b3) be any vector in the subspace. Then the sum of its components is 0, i.e.,
b1 + b2 + b3 = 0. Solve this for b1 to get b1 = −b2 − b3. Now write

b =




b1
b2
b3


 =




−b2 − b3
b2
b3


 = b2




−1
1
0


+ b3




−1
0
1


 .

We have just shown that any vector in the subspace can be written as a linear combination of the vectors (−1, 1, 0)
and (−1, 0, 1), and you can easily check that they are linearly independent, thus these two vectors are a basis for
the subspace. Since there are two vectors in the basis, the dimension is of the subspace is 2.

Often we will have a set of vectors that we know satisfies property (2) of a basis, i.e. any element in the space is a
combination of the vectors. We call such a set a spanning set, or we say it spans the vector space. Suppose we
are given a set of vectors and we want to find a basis for the set they span. They automatically satisfy property (2)
of a basis, but not necessarily property (1), since there may be redundant vectors. To get rid of the redundant
vectors we can make a matrix with the vectors as its columns and row reduce to find the pivot columns. The pivot
columns correspond to the vectors we keep for our basis, while the other columns correspond to the redundant
vectors which we will throw away.

Example: Find a basis for the set spanned by the vectors (1, 2, 3), (1, 4, 4), and (−1, 2,−1).

Solution: As we said above, property (2) is automatically satisfied here, so we just have to throw out the
redundant vectors. Following the above discussion,




1 1 −1
2 4 2
3 4 −1


 −→




1 1 −1
0 2 4
0 0 0




The first two columns are the pivot columns, hence the corresponding vectors (1, 2, 3) and (1, 4, 4) are a basis. Note
that depending on which row operations you do, you might get a different answer. But that’s ok, as there are many
possible bases for a space.
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Example: Do the vectors (1, 1, 1), (1, 2, 3), and (1, 4, 9) form a basis for R3?.

Solution: We have to verify properties (1) and (2) here. We can do this in one big step. Row reduce the matrix
with the vectors as its columns. If there is a pivot in every column, then the vectors are linearly independent. If
there is a pivot in every row, then the vectors span R3. (This is true since having a pivot in every row means that
Ax = b has a solution for any b, which means that any vector b in R3 can be written as a linear combination of
the columns of A.)




1 1 1
1 2 4
1 3 9


 −→




1 1 1
0 1 3
0 0 2




There is a pivot in every row and every column, so the vectors do form a basis.

Bases for Nullspace, Row Space and Column Space

Let A be a matrix with echelon form U and rref R.

Nullspace

The nullspace of A consists of all vectors x for which Ax = 0. To find it, reduce A to rref R.

A =




1 2 −3 −9 4
1 2 0 3 6
2 4 −3 −6 12


 −→ R =




1 2 0 3 0
0 0 1 4 0
0 0 0 0 1




Write Rx = 0 in equation form and solve for the pivot variables.

x1 + 2x2 + 3x4 = 0
x3 + 4x4 = 0
x5 = 0

−→
x1 = −2x2 − 3x4

x3 = −4x4

x5 = 0

Use this to find an expression for a typical vector in the nullspace.

x =




x1

x2

x3

x4

x5



=




−2x2 − 3x4

x2

−4x4

x4

0



= x2




−2
1
0
0
0



+ x4




−3
0

−4
1
0




So any vector in the nullspace can be written as a combination of the vectors (−2, 1, 0, 0, 0) and (−3, 0,−4, 1, 0). It
turns out that the vectors one gets at this point are always linearly independent. So these two vectors are a basis.
In general, then the vectors one gets at the last step are a basis. Notice that there is one vector for each free
variable, so the dimension of the nullspace is equal to the number of free variables (i.e. the number of non-pivot
columns). In this example the dimension is 2.

Column Space

The column space of a matrix A consists of all vectors which are linear combinations of its columns. Another way
to think of it is as all vectors b for which Ax = b has a solution. The columns of A are a spanning set, so to get a
basis we need to throw out any redundant vectors. To do this we row reduce A to an echelon form to see which
columns have pivots (any echelon form will do, rref is ok, but not necessary). The pivot columns of A are a basis,
and the dimension of the column space is the number of pivots. For example,

A =




1 2 −3 −9 4
1 2 0 3 6
2 4 −3 −6 12


 −→ U =




1 2 −3 −9 4
0 0 3 12 2
0 0 0 0 2




Columns 1,3, and 5 are the pivot columns, so they are a basis, i.e (1, 1, 2), (−3, 0,−3), and (4, 6, 12) are a basis.
Make sure to use the columns of A itself. The dimension in this case is 3.
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Row Space

The row space of a matrix A consists of all vectors which are linear combinations of its rows. Another way to think
of it is as the column space of AT . The rows of A are a spanning set, so to get a basis we need to throw out any
redundant vectors. To do this we row reduce A to an echelon form to see which rows have pivots (as before, any
echelon form will do). The pivot rows of A (or U or R) form a basis. The dimension of the row space is the number
of pivots. For example,

A =




1 2 −3 −9 4
1 2 0 3 6
2 4 −3 −6 12


 −→ U =




1 2 −3 −9 4
0 0 3 12 2
0 0 0 0 2




Rows 1, 2, and 3 are pivot rows, so they are a basis, i.e., (1, 2,−3,−9, 4), (1, 2, 0, 3, 6), and (2, 4,−3,−6,−12) are a
basis. Notice here that you could instead use the pivot rows of U or R as a (nicer) basis. The dimension in this
case is 3.

Remarks

Row operations don’t change the nullspace or the row space; that’s why we can use the pivot rows of A, U , or R as
a basis for the row space. However, row operations do change the column space, so it’s important that we only use
the pivot columns of A itself as a basis for the column space of A.

Notice also that the dimensions of the row space and the column space are always the same number r, and r plus
the dimension of the nullspace equals the number of columns of A.

Determinants

The determinant of a matrix is a single number that contains a lot of information about the matrix. The
determinant of A is denoted either by det(A) or |A| and it only applies to square matrices (matrices with the same
number of rows as columns). We have three different ways of finding determinants. The best way is often to use a
combination of the three.

Method 1: Row reduction

(1) The determinant of a triangular matrix (all zeroes above or below the diagonal) is the product of the entries on
the diagonal.

(2) Switching two rows switches the sign of the determinant.

(3) Multiplying a row by a number multiplies the determinant by that number, so you’ll have to divide your answer
by that number to cancel it out.

(4) Adding or subtracting a multiple of one row from another doesn’t affect the determinant.

(5) Row operations where the row you replace is also multiplied by a number do change the determinant (say you
replace row 1 with 3 row 1− 2 row 2, for example). If you replace row j with m row j - n row k, then this multiplies
the determinant by m, so you have to divide your answer by m to cancel out its effect.

Combining these gives us a method for finding determinants. Row reduce the matrix to a triangular form, and then
multiply the entries on the diagonal. Make sure to take into account signs from row switches, and be sure to divide
by any multiples you introduced if you do the row operations in (3) or (5).

Example: Find the determinant of




0 0 1
0 1 0
1 0 0


.

Solution: Switch rows 1 and 3. The resulting matrix is triangular. The minus sign comes from the row switch.

∣∣∣∣∣∣

0 0 1
0 1 0
1 0 0

∣∣∣∣∣∣
= −

∣∣∣∣∣∣

1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
= −(1 · 1 · 1) = −1
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Example: Find the determinant of




2 1 3
4 3 6
2 3 8


.

Solution: Row reduce to a triangular matrix.
∣∣∣∣∣∣

2 1 3
4 3 6
2 3 8

∣∣∣∣∣∣
r2−2r1
=

∣∣∣∣∣∣

2 1 3
0 1 0
2 3 8

∣∣∣∣∣∣
r3−r1
=

∣∣∣∣∣∣

2 1 3
0 1 0
0 2 5

∣∣∣∣∣∣
r3−2r2
=

∣∣∣∣∣∣

2 1 3
0 1 0
0 0 5

∣∣∣∣∣∣
= 2 · 1 · 5 = 10

The row operations are of the type in (4) that doesn’t affect the determinant.

Example: Find the determinant of




3 2 1
7 5 2
0 0 4


.

Solution: Row reduce to a triangular matrix.
∣∣∣∣∣∣

3 2 1
7 5 2
0 0 4

∣∣∣∣∣∣
7r1
=

1

7

∣∣∣∣∣∣

21 14 7
7 5 2
0 0 4

∣∣∣∣∣∣
3r2
=

1

3
· 1
7

∣∣∣∣∣∣

21 14 7
21 15 6
0 0 4

∣∣∣∣∣∣
r2−r1
=

1

3
· 1
7

∣∣∣∣∣∣

21 14 7
0 1 −1
0 0 4

∣∣∣∣∣∣
=

1

3
· 1
7
· 21 · 1 · 4 = 4

Another way to do this using the row operation in (5) would be
∣∣∣∣∣∣

3 2 1
7 5 2
0 0 4

∣∣∣∣∣∣
3r2−7r1→r2

=
1

3

∣∣∣∣∣∣

3 2 1
0 1 −1
0 0 4

∣∣∣∣∣∣
=

1

3
· 3 · 1 · 4 = 4

If you don’t mind the fractions, then you could also do this problem just by subtracting (7/3)row 1 from row 2 to
reduce to triangular form. This has the benefit of not having any multiples to remember to cancel out.

Method 2: Big Formula

The determinant can be given by a formula just in terms of the entries of the matrix. It is most useful when the
matrix is 3× 3 or smaller, since for an n× n matrix the formula has n! terms. (For instance, when n = 6, that’s 720
terms.)

(1) A 1× 1 matrix only has one entry. The determinant is equal to that entry.

(2) For a 2× 2 matrix, the formula is

∣∣∣∣
a b
c d

∣∣∣∣ = ad− bc.

(3) For a 3× 3 matrix the formula is
∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
= a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31

This is already a lot to remember, but there is a shortcut which only works in the 3× 3 case.

Example: (Shortcut for 3× 3) Compute

∣∣∣∣∣∣

2 4 1
3 0 7
2 5 6

∣∣∣∣∣∣
First copy the indicated entries onto the right side of the matrix. Multiply the entries along each indicated
diagonal, and add up the three values you get. This gives the first three terms in the big formula.

2 4 1
3 0 7 3
2 5 6 2 5

−→ (2)(0)(6) + (4)(7)(2) + (1)(3)(5) = 71

Next copy the other indicated entries to the left side of the matrix. Multiply the entries along each indicated
diagonal, take the negative of each product, and add up the three values you get. This gives the last three terms in
the big formula.

2 4 1
7 3 0 7

5 6 2 5 6
−→ −(1)(0)(2)− (4)(3)(6)− (2)(7)(5) = −142

The answer is then 71-142=-71.
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(4) There is a formula which works for bigger matrices. If you look at the 3× 3 formula, you’ll see that for every
possible permutation (x, y, z) of (1, 2, 3), there’s a term a1xa2ya3z (For example, (3, 2, 1) and (2, 1, 3) are possible
permutations; there’s 6 total.) Whether we add or subtract a given term is determined by how many steps it takes
us to get from (1, 2, 3) to (x, y, z). An even number of steps corresponds to adding, and an odd number corresponds
to subtracting. (For example, it takes 3 steps to get from (1, 2, 3) to (3, 1, 2) — (1, 2, 3) → (3, 2, 1) → (3, 1, 2).)

To get the 4× 4 formula, use permutations of (1, 2, 3, 4) instead of (1, 2, 3). There should be 24 terms, one for each
possible permutation. (For instance, −a13a24a32a41 is the term corresponding to the permutation (3, 4, 2, 1).)
Bigger matrices work similarly. However, with so many terms, the big formula is usually not practical for matrices
larger than 3× 3.

Method 3: Cofactors

Let Mij be the matrix left over after crossing out row i and column j. The term Cij = (−1)i+j det(Mij) is called a
cofactor. We can use cofactors to compute the determinant. The idea is to pick any row or any column of the
matrix, and for each entry in that row or column, multiply the entry and its cofactor, then add up all of the
products you computed. In terms of formulas,

detA = ai1Ci1 + ai2Ci2 + . . .+ ainCin if you expand across row i,
detA = a1jC1j + a2jC2j + . . .+ anjCnj if you expand across column j.

The (−1)i+j in Cij gives either a plus or minus sign. One way to get the signs right is to remember the sign matrix
(

+−+
−+−
+−+

)
, or for 4× 4,




+−+−
−+−+
+−+−
−+−+


. For any size matrix, start with a + in the first entry, and the signs

alternate from there.

The above formulas may not be very enlightening; the method is best demonstrated with some examples.

Example: Compute the determinant of




2 3 4
1 2 5
0 0 6


 three ways,

(a) by expanding across row 1,
(b) by expanding down column 2,
(c) by expanding across row 3.

Solution:

(a) The formula says

detA = a11C11 + a12C12 + a13C13

We know a11 = 2, a12 = 3, a13 = 4, so we just have to find the cofactors.

A =




2 3 4
1 2 5
0 0 6


 Signs =

(
+−+
−+−
+−+

)
M11 =




2 3 4
1 2 5
0 0 6


 M12 =




2 3 4
1 2 5
0 0 6


 M13 =




2 3 4
1 2 5
0 0 6




detA = 2
2 5
0 6

− 3
1 5
0 6

+ 4
1 2
0 0

= 2(12− 0)− 3(6− 0) + 4(0− 0) = 6

Use the formula (2) from method 2 for evaluating each 2× 2 determinant.

Streamlining things a bit, we see each term consists of two parts, first an entry in row 1, added or
subtracted according to the corresponding entry in the sign matrix (or by the formula (−1)i+j), and
second, the determinant of the matrix we get by crossing out the row and column containing the
entry.
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(b)




2 3 4
1 2 5
0 0 6




(
+−+
−+−
+−+

) 


2 3 4
1 2 5
0 0 6







2 3 4
1 2 5
0 0 6







2 3 4
1 2 5
0 0 6




detA = −3
1 5
0 6

+ 2
2 4
0 6

− 0
2 4
1 5

= −3(6− 0) + 2(12− 0)− 0(10− 4) = 6

(c)




2 3 4
1 2 5
0 0 6




(
+−+
−+−
+−+

) 


2 3 4
1 2 5
0 0 6







2 3 4
1 2 5
0 0 6







2 3 4
1 2 5
0 0 6




detA = 0
3 4
2 5

− 0
2 4
1 5

+ 6
2 3
1 2

= 0(15− 8)− 0(10− 4) + 6(4− 3) = 6

We didn’t have to write the last two terms in (c) since they were multiplied by 0. As you can see, the easiest of the
three to compute is (c). When evaluating a determinant by cofactors, you get to pick the row or column to expand
across. Usually it is easiest to expand across the one with the most zeros.

The Fastest Way:

Probably the fastest way to compute determinants, especially 4× 4 determinants, is to combine the methods. Use
row operations to create a row or a column with a lot of zeroes, and then use cofactor expansion down that row or
column.

Example: Find the determinant of




1 4 2 3
3 8 7 9
2 0 1 3
5 4 3 5


.

Solution: Subtract 2 row 1 from row 2 and subtract row 1 from row 3. These operations don’t change the
determinant. Then expand down column 2. We get

1 4 2 3
3 8 7 9
2 0 1 3
5 4 3 5

r2−2r1
r4−r1
=

1 4 2 3
1 0 3 3
2 0 1 3
4 0 1 2

Expand
= −4

1 3 3
2 1 3
4 1 2

Now compute the 3× 3 determinant using any method. The answer is −4(17) = −68.

Properties of Determinants

(1) detA = 0 ⇔ A has no inverse. In other words: if detA = 0, then you know A has no inverse, and conversely, if
you know A has no inverse, then it must be true that detA = 0.

(2) detAB = (detA)(detB).

(3) detA−1 = 1/detA. Try to prove this in one line using property (2) and the fact that AA−1 = I.

(4) detAT = detA. This rule implies that column operations affect the determinant in the same way that row
operations do. (Column operations are like row operations, except that you perform them on the columns instead
of the rows.)
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Cramer’s Rule

Cramer’s Rule is a method for solving Ax = b using determinants. Since it uses determinants, it is really only
practical for hand computations on small matrices, however it is useful for proving things, as well as for hand
computations when row operations would involve a lot of fractions.

Method:

(1) Compute detA. If you get 0, stop. Cramer’s rule won’t work.

(2) Let B1 be the matrix you get by replacing column 1 of A with b. Let B2 be the matrix you get by replacing
column 2 of A with b, etc.

(3) Then the solution is given by

x1 =
detB1

detA
, x2 =

detB2

detA
, x3 =

detB3

detA
, . . .

Example: Use Cramer’s rule to solve Ax = b where A =




2 1 2
5 7 3
3 1 2


 and b =




1
3
6


.

Solution: Compute the following:

detA =
2 1 2
5 7 3
3 1 2

= −11 detB1 =
1 1 2
3 7 3
6 1 2

= −55

detB2 =
2 1 2
5 3 3
3 6 2

= 17 detB3 =
2 1 1
5 7 3
3 1 6

= 41

Therefore x1 = 5, x2 = −17

11
, x3 = −41

11
.

Inverses by Cofactors:

We can regard finding A−1 as solving the equation AA−1 = I for A−1. We can convert this into a system of
equations of the form Ax = b which we can solve by Cramer’s Rule. In the end we get the following method for
finding A−1. Just as with Cramer’s rule, it’s usually not practical for hand computations on large matrices, but it
is useful for theoretical calculations and hand computations on 2× 2 and 3× 3 matrices, especially when row
operations involve lots of fractions.

Method:

(1) Compute detA. If you get 0, then stop as there is no inverse.

(2) Compute all the cofactors and put them into a matrix C, so that Cij is in row i, column j.

(3) A−1 is given by CT /detA.

One way to do step 2 is to compute all the determinants you get by crossing out a row and a column of A, and put
them into a matrix. The determinant calculated by crossing out row i and column j goes into row i, column j of
this new matrix. Then get the signs right by using the sign matrix . Don’t touch entries which are in the same
location as the + signs of the sign matrix . However, do change the sign of entries which are in the same location as
the − signs of the sign matrix.
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Example: Find the inverse of




0 1 3
1 0 1
2 1 0


.

Solution:

(1) Compute detA to get 5.

(2) Compute all the determinants you get by crossing out a row and a column of A, and put them into a matrix.

0 1 3
1 0 1
2 1 0

0 1 3
1 0 1
2 1 0

0 1 3
1 0 1
2 1 0

0 1 3
1 0 1
2 1 0

0 1 3
1 0 1
2 1 0

0 1 3
1 0 1
2 1 0

0 1 3
1 0 1
2 1 0

0 1 3
1 0 1
2 1 0

0 1 3
1 0 1
2 1 0

−→




∣∣∣∣
0 1
1 0

∣∣∣∣
∣∣∣∣
1 1
2 0

∣∣∣∣
∣∣∣∣
1 0
2 1

∣∣∣∣
∣∣∣∣
1 3
1 0

∣∣∣∣
∣∣∣∣
0 3
2 0

∣∣∣∣
∣∣∣∣
0 1
2 1

∣∣∣∣
∣∣∣∣
1 3
0 1

∣∣∣∣
∣∣∣∣
0 3
1 1

∣∣∣∣
∣∣∣∣
0 1
1 0

∣∣∣∣




=




−1 −2 1
−3 −6 −2
1 −3 −1




Now apply the sign matrix.



−1 −2 1
−3 −6 −2
1 −3 −1


 −→




+−+
−+−
+−+


 −→




−1 2 1
3 −6 2
1 3 −1


 = C

(3) Finally, transpose C and divide by detA.

A−1 =
1

5




−1 3 1
2 −6 3
1 2 −1




Eigenvalues and Eigenvectors

Consider multiplying a vector x by a matrix A. The resulting vector Ax most likely is of a different length and
points in a different direction than x.

Those vectors x for which Ax points in the same direction as x are called eigenvectors. Essentially this means
that multiplication by A on x acts just like multiplying x by a constant. If we call the constant λ, then we get the
equation

Ax = λx if x is an eigenvector.

The constant λ is called an eigenvalue.

How to Find Eigenvalues and Eigenvectors

The equation Ax = λx tells us how to find the eigenvalues and eigenvectors. Subtract λx from both sides and
factor it out to get (A− λI)x = 0. The only way for there to be nonzero eigenvectors (i.e. interesting eigenvectors)
is if A− λI is not invertible. Recall that this is true when det(A− λI) = 0. Thus to find the eigenvalues we solve
the polynomial equation given by det(A− λI) = 0. For each λ found above there are different eigenvectors. The
eigenvectors x satisfy (A− λI)x = 0, i.e. they are elements of the nullspace of A− λI.

Note that A− λI has the same entries as A except that the diagonal entries have λ subtracted from them. For
example:

A =

(
2 4
3 5

)
A− λI =

(
2− λ 4
3 5− λ

)
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In summary,

• To find the eigenvalues, compute det(A− λI). This is a polynomial equation. Set it equal to 0 and solve for λ.

• To find the eigenvectors for an eigenvalue λ, find the nullspace of A− λI. The vectors in the nullspace are the
eigenvectors corresponding to λ. Do this for all the eigenvalues.

Example: Find the eigenvalues and eigenvectors of

(
4 3
1 2

)
.

Solution:

• First find the eigenvalues:

4− λ 3
1 2− λ

= (4− λ)(2− λ)− 3 = λ2 − 6λ+ 5 = (λ− 1)(λ− 5)

So λ = 1, 5 are the eigenvalues.

• Eigenvectors for λ = 1: Find the nullspace of A− 3I.

A− 3I =

(
3 3
1 1

)
(1/3)r1−→

(
1 1
1 1

)
r2−r1−→

(
1 1
0 0

)
→ x1 + x2 = 0 → x1 = −x2

x =

[
x1

x2

]
=

[
−x2

x2

]
= x2

[
−1
1

]

Therefore the eigenvectors for λ = 1 are all multiples of (−1, 1).

• Eigenvectors for λ = 5: Find the nullspace of A− 5I.

A− 5I =

(
−1 3
1 −3

)
r3+r1−→

(
−1 3
0 0

)
−r1−→

(
1 −3
0 0

)
→ x1 − 3x2 = 0 → x1 = 3x2

x =

[
x1

x2

]
=

[
3x2

x2

]
= x2

[
3
1

]

Therefore the eigenvectors for λ = 5 are all multiples of (3, 1).

Example: Find the eigenvalues and eigenvectors of




2 2 2
2 2 2
2 2 2


.

Solution:

• First find the eigenvalues: det(A− λI) might look imposing, but use row operations to simplify it, and then
expand across row 1.

2− λ 2 2
2 2− λ 2
2 2 2− λ

r1−r3
r2−r3
=

−λ 0 λ
0 −λ λ
2 2 2− λ

= −λ
−λ λ
2 2− λ

+ λ
0 −λ
2 2

= −λ(−λ(2− λ)− 2λ) + λ(0−−2λ) = 4λ2 − λ3 + 2λ2 = λ2(6− λ)

Thus the eigenvalues are λ = 0, 6.

• Eigenvectors for λ = 0: Find the nullspace of A− 0I.

A− 0I =




2 2 2
2 2 2
2 2 2


 rref−→




1 1 1
0 0 0
0 0 0


→ x1 + x2 + x3 = 0 → x1 = −x2 − x3

x =




x1

x2

x3


 =




−x2 − x3

x2

x3


 = x2




−1
1
0


+ x3




−1
0
1




Therefore the eigenvectors for λ = 0 are all linear combinations of (−1, 1, 0) and (−1, 0, 1).
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• Eigenvectors for λ = 6: Find the nullspace of A− 6I.

A− 6I =




−4 2 2
2 −4 2
2 2 −4


 rref−→




1 0 −1
0 1 −1
0 0 0


→ x1 − x3 = 0

x2 − x3 = 0
→ x1 = x3

x2 = x3

x =




x1

x2

x3


 =




x3

x3

x3


 = x3




1
1
1




Therefore the eigenvectors for λ = 6 are all multiples of (1, 1, 1).

Remarks about Eigenvalues and Eigenvectors:

• There are a few ways to check your work:

1. The product of the eigenvalues equals detA.

2. The sum of the eigenvalues equals the sum of the diagonal entries of A.

3. Eigenvalues are numbers which make A− λI not invertible. Therefore, if you find that the only
eigenvector you get is 0 (or equivalently, if you have a pivot in every column), then there is certainly a
mistake somewhere.

• The eigenvalues of a triangular matrix are the entries on the diagonal.

• It’s possible that the all the eigenvalues are imaginary numbers. This means that the only (real) eigenvector
is 0.

• Finding the eigenvalues of a n× n involves solving a polynomial of degree n which is often difficult for n > 2.

Diagonalizing a Matrix

A diagonal matrix is a matrix whose entries above and below the diagonal are all zero. Diagonal matrices look like
the identity matrix, except that the entries on the diagonal don’t have to be all ones. Diagonal matrices are nice to
work with because they have so many zero entries. Using eigenvalues and eigenvectors, we can rewrite a matrix in
terms of a diagonal matrix. To do this, i.e. to diagonalize an n× n matrix, we need the matrix to have n linearly
independent eigenvectors, otherwise we can’t do it.

Example:

(1) If all the eigenvalues of a matrix are different, then there will be n linearly independent eigenvectors, so the
matrix is diagonalizable.

(2) Suppose a 3× 3 matrix has eigenvalues 3 and 4, and in finding the eigenvectors you find for λ = 3, the nullspace
of A− λI is given by x = x2(2, 1, 0) + x3(−1, 0, 1) and for λ = 4, the nullspace of A− λI is given by x = x3(3, 0, 1).
The vectors (2, 1, 0), (−1, 0, 1), and (−3, 0, 1) are three linearly independent eigenvectors, so the matrix is
diagonalizable.

(3) Suppose in the above example, the nullspace of A− λI for λ = 3 didn’t have the second term. Then we could
only find two linearly independent eigenvectors, and so we couldn’t diagonalize the matrix.

When you find the nullspace of A− λI, the vectors at the last step are a basis for the nullspace. (For example, in
(2), the vectors we’re referring to are (2, 1, 0) and (−1, 0, 1).) It turns out that the set of all the basis vectors for all
the eigenvalues is linearly independent. So you just have to count up the total number of basis vectors you find,
and if the total is n, then the matrix is diagonalizable, otherwise it is not.
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How to Diagonalize A Matrix

Let Λ be the diagonal matrix whose entries along the diagonal are the eigenvalues of A. Let S be the matrix whose
columns are the eigenvectors of A. It is important that the order of the eigenvectors in S corresponds to the order
of the eigenvalues in Λ. For example, if the eigenvalue λ = −4 is in column 3 of Λ, then the eigenvector in column 3
of S must be an eigenvector you found using λ = −4. We can diagonalize A by writing it as

A = SΛS−1

Example: Diagonalize A =

(
2 1
0 5

)
.

Solution: The matrix is upper triangular so the eigenvalues are λ = 2, 5, the entries on the diagonal.

λ = 2 : A− λI =

(
0 1
0 3

)
rref−→

(
0 1
0 0

)
→ x2 = 0 → x =

[
x1

x2

]
=

[
x1

0

]
= x1

[
1
0

]

λ = 5 : A− λI =

(
−3 1
0 0

)
rref−→

(
1 −1/3
0 0

)
→ x1 = x2/3 → x =

[
x1

x2

]
=

[
x2/3
x2

]
= x2

[
1/3
1

]

Λ =

(
2 0
0 5

)
S =

(
1 1
0 3

)
S−1 =

1

3

(
3 −1
0 1

)

Notice that for the second column instead of using (1/3, 1) we used (1, 3). This is ok since the eigenvectors for
λ = 5 are all the multiples of (1/3, 1). (1, 3) is such a multiple, and we chose it since it has no fractions. This
wasn’t necessary, but it gives a nicer S. So we diagonalize A as

A = SΛS−1 =
1

3

(
1 1
0 3

)(
2 0
0 5

)(
3 −1
0 1

)
.

Using Diagonalization to Find Powers of A

Suppose A is diagonalizable, so that A = SΛS−1. Observe the following:

A2 = (SΛS−1)(SΛS−1) = SΛ2S−1

A3 = A2A = (SΛ2S−1)(SΛS−1) = SΛ3S−1

We used the fact that SS−1 = I to simplify both expressions. In general we get Ak = SΛkS−1. This is useful
because raising diagonal matrices to powers is particularly simple – just raise each diagonal entry to the power.
This doesn’t usually work with non-diagonal matrices. Thus to compute Ak we only need three multiplications
instead of k + 3 multiplications.

Example: Use the diagonalization of the matrix in the example above to compute Ak.

Solution:

Ak = SΛkS−1 =
1

3

(
1 1
0 3

)(
2k 0
0 5k

)(
3 −1
0 1

)
=

1

3

(
2k 5k

0 3 · 5k
)(

3 −1
0 1

)
=

(
2k (5k − 2k)/3
0 5k

)

We just multiplied all the matrices together. Notice that we brought the 1/3 inside at the last step.
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Math 43 Review Notes - Chapters 6 & 8.3

Symmetric Matrices and Orthogonal Diagonalization

A symmetric matrix has only real eigenvalues. Its eigenvectors can always be chosen to be orthonormal. A
symmetric matrix can always be diagonalized, unlike other matrices. When we diagonalize a symmetric matrix we
get a special diagonalization called an orthogonal diagonalization.

We diagonalize A as A = QΛQT , where Λ is the diagonal matrix with the eigenvalues of A on the diagonal, and Q
is the matrix whose columns are unit eigenvectors.∗ Make sure that the unit eigenvectors in Q line up with the
corresponding eigenvalues in Λ.

This diagonalization is very similar to the usual SΛS−1 diagonalization. The difference here is that we use unit
eigenvectors, and since the columns of Q are orthonormal, Q−1 = QT , so we don’t have to compute an inverse.

Example: Orthogonally diagonalize

(
8 6
6 −8

)
.

Solution: First find the eigenvalues.

8− λ 6
6 −8− λ

= λ2 − 100 = (λ− 10)(λ+ 10).

Thus the eigenvalues are 10 and -10. Now find the eigenvectors and unit eigenvectors.

λ = 10 :

(
−2 6
6 −18

)
rref→

(
1 −3
0 0

)
⇒

[
3
1

]
is an eigenvector, and

[
3/
√
10

1/
√
10

]
is the unit eigenvector.

λ = −10 :

(
18 6
6 2

)
rref→

(
1 1/3
0 0

)
⇒

[
−1
3

]
is an eigenvector, and

[
−1/

√
10

3/
√
10

]
is the unit eigenvector.

Finally, we write

A = QΛQT =

(
3/
√
10 −1/

√
10

1/
√
10 3/

√
10

)(
10 0
0 −10

)(
3/
√
10 1/

√
10

−1/
√
10 3/

√
10

)
.

Markov Matrices

A Markov matrix is a matrix whose entries satisfy:

1. All the entries are ≥ 0.

2. The entries in each column add up to 1.

For example,

(
.2 .5
.8 .5

)
and

(
1 1/3
0 2/3

)
are 2× 2 Markov matrices.

A Markov matrix always has 1 as an eigenvalue. The eigenvectors corresponding to λ = 1 are called steady-state
eigenvectors. To see why they are called this, recall the equation Ax = λx that defines eigenvalues and
eigenvectors. With λ = 1 this says Ax = x; in other words multiplication by A doesn’t change x. Many real-life
phenomena are modelled by the equation xn+1 = Axn, with A a Markov matrix. The long range behavior of such a
system is determined by the steady state eigenvectors.

Example: Find the eigenvalues and a steady-state eigenvector for A =

(
.3 .4
.7 .6

)
.

Solution: We know right away that 1 is an eigenvalue for A, since A is a Markov matrix. To find the other,
remember that the sum of the eigenvalues is equal to the sum of the diagonal entries of A. So we solve
1 + λ = .3 + .6 to get the other eigenvalue −.1.

The steady-state eigenvectors are eigenvectors for λ = 1:

A− λI =

(
−.8 .5
.8 −.5

)
rref→

(
1 −5/8
0 0

)
.

Thus the steady state eigenvectors are multiples of

[
5/8
1

]
. For instance,

[
5
8

]
or

[
5/13
8/13

]
are two examples.

∗If one eigenvalue gives more than one linearly independent eigenvector, then you will have to orthogonalize the vectors using Gram-
Schmidt or something else. We didn’t consider anything like this in class, however, so don’t worry about it.
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More about Steady-State Eigenvectors

Markov matrices are useful for modelling many things. Below is a simple example.

Example: In any year, 92% of deer in the forest remain there, while 8% find their way into the suburbs (and
people’s backyards, where they eat their shrubbery). In addition, 88% of the deer in the suburbs remain there,
while 12% are caught and returned into the forest. (Note that this is a simplified example; it doesn’t take into
account a lot of factors. Can you think of any assumptions in this model?)

Let fn and sn denote the number of deer in the forest and suburbs, respectively, in year n. Then we can write the
above paragraph mathematically as

fn+1 = .92fn + .12sn
sn+1 = .08fn + .88sn

.

We can write this system of equations in matrix form as

[
fn+1

sn+1

]
=

(
.92 .12
.08 .88

)[
fn
sn

]
.

Let’s call the matrix A. It is a Markov matrix, and thus it has λ = 1 as an eigenvalue. The steady-state
eigenvectors (eigenvectors for λ = 1) are found by computing the nullspace of A− λI.

A− λI =

(
−.08 .12
.08 −.12

)
rref→

(
1 −3/2
0 0

)
.

Thus the steady state eigenvectors are multiples of (3/2, 1). One multiple without fractions is (3, 2). To express this
in terms of percents, divide each entry by the sum of the two entries to get (3/5, 2/5) = (.6, .4).

Thus we expect that after many years (i.e., when n is large) 60% of the total deer population will be in the forest
and 40% will be in the suburbs. To see precisely why this is true, notice from the matrix equation above that

[
f2
s2

]
= A

[
f1
s1

]
and

[
f3
s3

]
= A

[
f2
s2

]
= A

(
A

[
f1
s1

])
= A2

[
f1
s1

]
.

In general, we see that

[
fn+1

sn+1

]
= An

[
f1
s1

]
.

So the population is closely related to An. Recall that we can use diagonalization to find An. We diagonalize A as
A = SΛS−1, and from there we get An = SΛnS−1.

To diagonalize A we need the other eigenvalue and its eigenvector. As in the previous example, to find the other
eigenvalue we solve λ+ 1 = .92 + .88 to get λ = .8. An eigenvector for λ = .8 turns out to be (−1, 1). Thus we can
write

An = SΛnS−1 =

(
3 −1
2 1

)(
1 0
0 .8n

)(
1 1

−2 3

)
1

5
=

1

5

(
3 + 2(.8n) 3− 3(.8n)
2− 2(.8n) 2 + 3(.8n)

)
.

The last equality comes from multiplying the three matrices together. Notice that for fairly large values of n, .8n is
very small. For example, .825 ≈ .004 and .850 ≈ .000014. So after a number of years we can ignore the .8n term and
say

A ≈
(

3/5 3/5
2/5 2/5

)
.

Notice that the columns are both the steady-state eigenvector of A that we found above. Moreover,

[
fn+1

sn+1

]
= An

[
f1
s1

]
≈

(
3/5 3/5
2/5 2/5

)[
f1
s1

]
=

[ 3
5f1 +

3
5s1

2
5f1 +

2
5s1

]
= (f1 + s1)

[
3/5
2/5

]
.

So we see that in the long run (in this case after roughly 20-50 years) 3/5 (60%) of the deer population will be in
the forest and 2/5 (40%) in the suburbs. In addition, the equation above says that the percentages will remain the
same for all later years. This is why we call the vector (3/5, 2/5) a steady-state.

Finally, notice that the percentage of deer in the forest versus the suburbs during year 1 had absolutely no effect on
the outcome in the long run. Whether all the deer start out in the forest during year 1, or if it was 50/50, or
whatever, makes no difference in the long run.
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Positive Definite Matrices

A symmetric matrix with positive eigenvalues is called positive definite. The following gives a test for positive
definiteness.

Let A be a symmetric matrix. If any one of the following is true, then the others are also true.

1. Every eigenvalue is positive.

2. Every upper left determinant is positive.

3. Every pivot is positive.

4. xTAx is positive except at x = 0.

Remember, by positive we mean strictly greater than zero. Zero is not positive.

By “upper left determinant” we mean the determinant of the upper left part of the matrix. The four upper left
determinants of this matrix are indicated on the right.




1 2 3 4
3 4 6 8
2 5 8 1
1 3 5 7


 1,

1 2
3 4

= −2,
1 2 3
3 4 6
2 5 8

= −1,

1 2 3 4
3 4 6 8
2 5 8 1
1 3 5 7

= −10

Example: Are all the eigenvalues of

(
3 4
4 2

)
positive?

Solution: The upper left determinants are 3 and
3 4
4 2

= −10. They are not both positive, so neither are the

eigenvalues.

Quadratic Forms

The term xTAx in (4) is called a quadratic form. Let’s compute it for the 2× 2 symmetric matrix

(
a b
b c

)
.

xTAx =
[
x y

]( a b
b c

)[
x
y

]
=

[
ax+ by bx+ cy

] [ x
y

]
= ax2 + 2bxy + cy2.

Example: Using this formula, we can easily convert between a 2-dimensional quadratic form and its corresponding

matrix. For example, the symmetric matrix

(
3 2
2 7

)
has quadratic form 3x2 + 4xy + 7y2, and conversely, the

quadratic form 5x2 + 3xy + 2y2 corresponds to the matrix

(
5 3/2
3/2 2

)
.

Completing the Square

You can check that we can write ax2 + 2bxy + cy2 = a

(
x+

b

a
y

)2

+

(
ac− b2

a

)
y2.

This is a lot to remember; however, notice that the coefficients of the square terms are actually the pivots of the
matrix corresponding to this quadratic form. Breaking the quadratic form into these two square terms can be
helpful sometimes.

Example: Are there any values of x and y that make 3x2 + 12xy + 5y2 negative? If so, what are they?

Solution: The matrix corresponding to 3x2 + 12xy + 5y2 is

(
3 6
6 5

)
. Subtract 2 row 1 from row 2 to see what

the pivots are. We get

(
3 6
0 −7

)
. Now complete the square:

3x2 + 12xy + 5y2 = 3(x+ 2y)2 +−7y2.

The negative pivot indicates there are values of x and y that make this negative. To find them, choose x and y to
make the first term 0, say x = −2, y = 1. With this x and y the quadratic form 3x2 + 12xy + 5y2 evaluates to -7.
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Finding the Axes of a Tilted Ellipse

This is a nice example of how quadratic forms and orthogonal diagonalization can help with an algebra problem.
The ellipse on the left is an ordinary ellipse. Its equation is given by ax2 + by2 = 1. Its major and semi-major axes
are the x and y axis, respectively.

However, we could have a “tilted” ellipse, one whose axes lie on diagonal lines, instead of the x and y axes. Its
equation will have an additional term, an xy term. We want to be able to find its major and semi-major axes.

Example: Find the axes of the ellipse 11x2 − 6xy + 19y2 = 1.

Solution: Notice that 11x2 − 6xy + 19y2 is the quadratic form associated to A =

(
11 −3
−3 19

)
.

Now orthogonally diagonalize A. Calculating the eigenvalues and eigenvectors, we find the eigenvalues are 20 and
10 with corresponding eigenvectors (−1, 3) and (3, 1) and corresponding unit eigenvectors (−1, 3)/

√
10 and

(3, 1)/
√
10. Thus we can orthogonally diagonalize A as

A = QΛQT =
1√
10

(
−1 3
3 1

)(
20 0
0 10

)(
−1 3
3 1

)
1√
10

.

Now simplifying and substituting QΛQT for A, we can write

11x2 − 6xy + 19y2 =
[
x y

]
A

[
x
y

]
=

1

10

[
x y

]( −1 3
3 1

)(
20 0
0 10

)(
−1 3
3 1

)[
x
y

]
.

Simplify this a bit by multiplying the first two parts together and multiplying the last two together:

[
x y

]( −1 3
3 1

)
=

[
−x+ 3y 3x+ y

]
,

(
−1 3
3 1

)[
x
y

]
=

[
−x+ 3y
3x+ y

]
.

By doing this, the big messy term ends up looking just like a quadratic form:

1

10

[
−x+ 3y 3x+ y

]( 20 0
0 10

)[
−x+ 3y
3x+ y

]
=

1

10

[
X Y

]( 20 0
0 10

)[
X
Y

]
,

where X = −x+ 3y and Y = 3x+ y. Use the formula ax2 + 2bxy + cy2 on the previous page to write this as

1

10
(20X2 + (2)(0)XY + 10Y 2)

Plugging back in for X and Y and simplifying, we see that we have rewritten the original ellipse equation as

2(−x+ 3y)2 + (3x+ y)2 = 1.

The axes of the ellipse are given by the setting the terms being squared equal to 0. So the equations of the axes are

−x+ 3y = 0
3x+ y = 0

or
y = x/3
y = −3x

.

Similar Matrices

We say B is similar to A if there is an M so that B = M−1AM . For example,

(
4 2

−1 1

)
is similar to

(
2 0
0 3

)

since

(
4 2

−1 1

)
=

(
−1 −2
1 1

)(
2 0
0 3

)(
1 2

−1 −1

)
. This example comes from diagonalization.

Fact: Similar matrices have the same eigenvalues.

Example:

(
2 5
0 3

)
is not similar to

(
2 0
0 1

)
because they have different eigenvalues.

Example: Find an M to show that B =

(
1 3
0 2

)
is similar to A =

(
−1 6
−1 4

)
.

Solution: We want to find an M so that B = M−1AM . Multiply both sides of this equation by M to get

MB = AM . Now let M be a generic 2× 2 matrix

(
a b
c d

)
and compute MB and AM :

MB =

(
a b
c d

)(
1 3
0 2

)
=

(
a 3a+ 2b
c 3c+ 2d

)
, AM =

(
−1 6
−1 4

)(
a b
c d

)
=

(
−a+ 6c −b+ 6d
−a+ 4c −b+ 4d

)
.
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Since MB = AM , the corresponding entries in each must be equal, so we get the following system of equations:

a = −a+ 6c
3a+ 2b = −b+ 6d
c = −a+ 4c
3c+ 2d = −b+ 4d

Simplify−→
a = 3c
a+ b = 2d
a = 3c
3c− b = 2d

.

This has an infinite number of solutions. Pick any value of c and d, say c = d = 1. Plugging into the equations, we

get a = 3 and b = −1. Thus M =

(
3 −1
1 1

)
.

The only thing to be careful about when choosing c and d is to make sure that M is invertible. For instance
c = d = 0 would be a bad choice. In general, it might not be this easy to solve the equations, but you can always
move all the terms to the left hand side, write the system in matrix form and row reduce to find the solution. If
there is no solution, or the only solution is all zeroes, then there is no M to be found, so the matrices are not
similar. Note also that this same procedure (with a bigger M) works for larger matrices.

Singular Value Decomposition (SVD)

The singular value decomposition is a way to kind of diagonalize matrices of any shape. It uses the fact that ATA
is a square symmetric matrix which can be orthogonally diagonalized.

Let A be an m× n matrix. The SVD is A = UΣV T , where

Σ — This is an m× n matrix whose diagonal entries are the square roots of the eigenvalues of ATA. (These are
called the singular values of A. All the other entries are 0.

V — This is an n× n matrix whose columns are the unit eigenvectors of ATA.∗ Its columns are orthonormal.

U — This is an m×m matrix. For each nonzero eigenvector v of ATA, compute Av and find the corresponding
unit vector. These are the columns of U .† Its columns are also orthonormal.

Order matters. Arrange the singular values in Σ from largest to smallest so that the largest is the first entry, the
next largest is the second entry, etc. The vectors in V and U must line up with their corresponding eigenvalues in
Σ just like in diagonalization.

Helpful Hints:

(1) If A has more columns than rows, then AAT will be a smaller matrix than ATA and thus its eigenvalues may
be easier to find. In this case, any eigenvalue of AAT is also an eigenvalue of ATA, and the rest of the eigenvalues
of ATA are 0.

(2) When finding a unit vector in the direction of a given vector, factor out anything you can from the vector and
then ignore the number you factored out. For example, to find a unit vector in the same direction as (4, 8), factor
out a 4 to get 4(1, 2), ignore the 4 and just find the unit vector in the direction of (1, 2), which is (1, 2)/

√
5. Since

(1, 2) and (4, 8) both point in the same direction, the unit vector in the direction of either will be the same.

Example: Find the SVD of

(
2 0
3 2

)
.

Solution: First compute ATA =

(
13 6
6 4

)
. Its eigenvalues are 16 and 1 with corresponding eigenvectors (2, 1)

and (−1, 2). The corresponding unit eigenvectors are (2, 1)/
√
5 and (−1, 2)/

√
5. Thus

Σ =

( √
16 0

0
√
1

)
and V =

(
2/
√
5 −1/

√
5

1/
√
5 2/

√
5

)
.

Now multiply each eigenvector by A and find the corresponding unit vectors to find the columns of U :

(
2 0
3 2

)[
2
1

]
=

[
4
8

]
−→ 1√

5

[
1
2

]
,

(
2 0
3 2

)[
−1
2

]
=

[
−2
1

]
−→ 1√

5

[
−2
1

]
.

Thus A = UΣV T =

(
1/

√
5 −2/

√
5

2/
√
5 1/

√
5

)(
4 0
0 1

)(
2/
√
5 1/

√
5

−1/
√
5 2/

√
5

)
.

∗Footnote on first page applies here, too.
†If n < m, then there will not be enough vectors to fill up U . More work is needed as the columns U must be extended to an

orthonormal basis of Rm. However, we didn’t consider this in class, so don’t worry about it.
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Example: Find the SVD of

(
3 2 2
2 3 −2

)
.

Solution: First compute ATA =




13 12 2
12 13 −2
2 −2 8


. Use helpful hint (1) to compute its eigenvalues.

AAT=

(
17 8
8 17

)
has eigenvalues 25 and 9, thus ATA has eigenvalues 25, 9, and 0.

The corresponding eigenvectors are (1, 1, 0), (1,−1, 4), and (−2, 2, 1) with corresponding unit vectors (1, 1, 0)/
√
2,

(1,−1, 4)/
√
18, and (−2, 2, 1)/3. Thus

Σ =

( √
25 0 0

0
√
9 0

)
and V =




1/
√
2 1/

√
18 −2/3

1/
√
2 −1/

√
18 2/3

0 4/
√
18 1/3


 .

Remember that Σ is the same shape as A, 3× 2, so we can only fit the first two singular values in. Now multiply
each eigenvector by A and find the corresponding unit vectors to find the columns of U :

(
3 2 2
2 3 −2

)


1
1
0


 =

[
5
5

]
−→ 1√

2

[
1
1

]
,

(
3 2 2
2 3 −2

)


1
−1
4


 =

[
9

−9

]
−→ 1√

2

[
1

−1

]
.

Notice that we did not use the third eigenvector, the one corresponding to the eigenvalue 0. This is because since A
is 3× 2, U is going to be 2× 2 with vectors corresponding to the largest two eigenvalues.

So we have A = UΣV T =

(
1/

√
2 1/

√
2

1/
√
2 −1/

√
2

)(
5 0 0
0 3 0

)


1/
√
2 1/

√
2 0

1/
√
18 −1/

√
18 4/

√
18

−2/3 2/3 1/3


.

Orthonormal Bases for the Four Fundamental Spaces

The SVD gives orthonormal bases for the fundamental spaces. Let A be a matrix with rank r (i.e., A has r nonzero
pivots).

(1) The first r columns of V are an orthonormal basis for the row space of A.

(2) The remaining columns of V are an orthonormal basis for the nullspace of A.

(3) The first r columns of U are an orthonormal basis for the column space of A.

(4) The remaining columns of U are an orthonormal basis for the nullspace of AT (called the left nullspace).

Example: In the second example above A has rank 2. Thus the orthonormal bases are the following:

Row space —





1√
2




1
1
0


 ,

1√
18




1
−1
4





 Nullspace —





1

3




−2
2
1







Column space —

{
1√
2

[
1
1

]
,
1√
2

[
1

−1

]}
Left nullspace — None: only 0 is in the left nullspace.
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Math 43 Review Notes - Chapter 7

Linear Transformations

A linear transformation T is a function that takes vectors as its inputs and has vectors as its outputs. It must
satisfy the following two properties:

(1) T (v +w) = T (v) + T (w) for any vectors v and w.

(2) T (cv) = c T (v) for any vector v and any number c.

An important consequence of this definition is that T (0) = 0. This can be seen by taking c = 0 in property (2).

Notation: Sometimes we use the notation T : Rn → Rm to mean that T takes vectors with n components and
outputs vectors with m components. (remember, Rn stands for all vectors with n components, each of which is a
real number.)

The columns of the n× n identity matrix I form what we call the standard basis for Rn. For example, when n = 2
they are (1, 0) and (0, 1) and when n = 3 they are (1, 0, 0), (0, 1, 0), and (0, 0, 1).

Example: Determine which of the following are linear transformations.

(a) T (



x
y
z


) =

[
3x− y + z
2x+ 5y

]

(b) T (

[
x
y

]
) =

[
3x− 4

y

]

(c) T (

[
x
y

]
) =

[√
x
y

]

Solution:

(a) This is a linear transformation. To show it carefully, verify that properties (1) and (2) hold for generic vectors.

(b) This is not a linear transformation because

T (

[
0
0

]
) =

[
3(0)− 4

0

]
=

[
−4
0

]
6=

[
0
0

]
.

A linear transformation must always have T (0) = 0.

(c) This is not a linear transformation because property (2) doesn’t work.

T (2

[
1
0

]
) = T (

[
2
0

]
) =

[√
2
0

]
, 2T (

[
1
0

]
) = 2

[√
1
0

]
=

[
2
0

]
.

As a rule of thumb, linear transformations are those functions whose outputs have components that look similar to
the components in (a). Transformations having a square root term, a nonzero constant term like the 4 in (b), an
x2, a cosine function, or in general any nonlinear terms, will not be linear transformations.

Example: Suppose T is a linear transformation with T (

[
1
2

]
) =

[
3
5

]
, and T (

[
3
3

]
) =

[
4
7

]
.

Find T (

[
4
5

]
), T (

[
9
9

]
), and T (

[
14
16

]
).

Solution: Use properties (1) and (2).

T (

[
4
5

]
) = T (

[
1
2

]
) + T (

[
3
3

]
) =

[
3
5

]
+

[
4
7

]
=

[
7
12

]
.

T (

[
9
9

]
) = T (3

[
3
3

]
) = 3T (

[
3
3

]
) = 3

[
4
7

]
=

[
12
21

]
.

T (

[
14
16

]
) = T (2

[
1
2

]
+ 4

[
3
3

]
) = 2T (

[
1
2

]
) + 4T (

[
3
3

]
) = 2

[
3
5

]
+ 4

[
4
7

]
=

[
22
38

]
.
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Matrix of a Linear Transformation

One very important example of a linear transformation is multiplication by a matrix. For, example the
transformation

T (

[
x
y

]
) =

(
1 3
2 4

)[
x
y

]
=

[
x+ 3y
2x+ 4y

]

is a linear transformation. The important fact is that every linear transformation can be written in this way, as a
matrix times a vector.

To find the matrix of T : Rn → Rm, replace each column of the n× n identity matrix I with T of that column.

Example: Find the matrix A associated to the following linear transformations.

(a) T (

[
x
y

]
) =

[
2x− 3y

x

]

(b) T (



x
y
z


) =

[
x+ y + z

2x− 3y − 4z

]

Solution:

(a) T (

[
1
0

]
) =

[
2
1

]
, T (

[
0
1

]
) =

[
−3
0

]
. Therefore A =

(
2 −3
1 0

)
.

(b) T (



1
0
0


) =

[
1
2

]
, T (



0
1
0


) =

[
1

−3

]
, T (



0
0
1


) =

[
1

−4

]
. Therefore A =

(
1 1 1
2 −3 −4

)
.

Shortcut: The first column of A consists of the coefficients of the x terms, the second column has the coefficients
of the y terms, etc.

Different Bases

The above example gives the matrix with respect to the standard basis. Sometimes we may need the matrix with
respect to different bases. Suppose {v1,v2, . . . ,vn} is a basis for the input vectors and {w1,w2, . . . ,wm} is a basis
for the output vectors. To find the matrix A, compute T (v1), T (v2), etc., then write each of the outputs in terms
the w’s. The coefficients of the w’s give the entries of A.

Example: Let v1 =



1
1
1


, v2 =



1
2
4


, v3 =



1
3
9


, w1 =

[
1
1

]
, w2 =

[
1
2

]
, and let T : R3 → R2 be the linear

transformation T (



x
y
z


) =

[
x+ y
y + z

]
. Find the matrix of T with respect to the the bases {v1,v2,v3} and {w1,w2}.

Solution: First compute

T (v1) =

[
2
2

]
, T (v2) =

[
3
6

]
, T (v3) =

[
4
12

]
.

It is easy to see that the first vector is 2w1 and the second vector is 3w2. To write the third vector in terms of w1

and w2 you can either try by trial and error, or solve the following equation:
(

1 1
1 2

)[
a
b

]
=

[
4
12

]

The columns of the matrix here are the basis vectors w1 and w2. The solution is a = −4, b = 8. Thus the third
vector is −4w1 + 8w2. The table on the left gives the coefficents of the w’s. It helps us see what A is.

v1 v2 v3

w1 2 0 −4
w2 0 3 −8

A =

(
2 0 −4
0 3 8

)
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Geometry of Linear Transformations

We can understand ordinary functions better by graphing them. We can’t graph most linear transformations, but
we can instead see how they transform geometric shapes.

The transformations are completely determined by what they do to the standard basis vectors. In two dimensions
we consider what happens to the basis vector (1, 0) along the x-axis and the basis vector (0, 1) along the y-axis.
These vectors may be stretched/shrunk and/or rotated by the linear transformation. The rotation gives new x and
y directions for the transformed picture, while a stretching/shrinking of (1, 0) will stretch/shrink the original picture
in the new x direction, and a stretching/shrinking of (0, 1) will stretch/shrink the picture in the new y direction.

Example: Determine how the shape of the house changes under the following linear transformations.

The matrix is the identity matrix. The output is the same as the input.

Here the basis vector along the x-axis gets magnified by a factor of 2, while the basis vector along the y-axis gets
shrunk to half its size. Thus the picture is stretched in the x direction and crunched in the y direction.

Here the basis vector along the x-axis is unchanged, while the basis vector along the y-axis is rotated by 45◦ and
stretched a bit (the length of (0, 1) is 1, while the length of (1, 1) is

√
2). The effect is called a shear.
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Here both basis vectors are rotated into the line y = x. So the entire house is “smooshed” onto that line. The peak
of the house gets sent to (2, 2).

Here using some trigonometry we see that each basis vector is rotated counterclockwise by 30◦. Therefore the
entire house is rotated by 30◦.

Here both the basis vectors are swapped. Thus every vector has its x and y components swapped. The original
y-axis becomes the new x-axis, and the original x-axis becomes the new y-axis.

Here the new x-axis is the old y-axis and the new y-axis is the line through (4, 1). Both directions are stretched.

From these pictures we can see why these transformations are called linear: straight lines are transformed into
straight lines or points. A nonlinear transformation might transform them into curves. Notice also that in all cases
the transformed house touches the origin (0, 0). This is because T (0) = 0 for any linear transformation.

4



Compositions

The composition of two linear transformations S and T , denoted T ◦ S, is the linear transformation obtained by
first doing S and then doing T . If the matrix of S is A and the matrix of T is B, then the linear transformation
T ◦ S has matrix BA.

Example: Suppose S and T are linear transformations with matrices A =

(
0 −1
1 0

)
and B =

(
−1 0
0 1

)
.

The transformation S rotates the house by 90◦, while T reflects the house about the y-axis. The linear

transformation T ◦ S has matrix BA =

(
−1 0
0 1

)(
0 −1
1 0

)
=

(
0 1
1 0

)

The composite effect is a coordinate swap (see the second to last example on the previous page). Compare this to

the linear transformation S ◦ T which has matrix AB =

(
0 −1
1 0

)(
−1 0
0 1

)
=

(
0 −1

−1 0

)

The composite effect is a reflection about the origin. Notice that this is different from T ◦ S (this has to do with the
fact that order matters when multiplying matrices), so order matters in compositions.

Inverse Transformation

The inverse transformation T−1 of a linear transformation T undoes the effect of T . If the matrix of T is A, then
the matrix of T−1 is given by A−1.
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Kernel

The kernel of a linear transformation consists of all the input vectors that give an output of 0.

For example, suppose T (



x
y
z


) =

[
x+ y
3z

]
.

In order for the output to be 0, we must have x+ y = 0 and 3z = 0, which becomes y = −x and z = 0. Thus the
kernel consists of all vectors of the form (x,−x, 0), or equivalently, all multiples of (1,−1, 0).

Another way to find the kernel is to find the matrix A of T . The kernel is then just the nullspace of A. This is
because the nullspace of A is by definition all the vectors v for which Av = 0, and since T (v) = Av, we see that
the kernel of T and the nullspace of A are really the same thing.

In the example, the matrix of T is A =

(
1 1 0
0 0 3

)
. Find the nullspace, and see that it gives the same result.

Range

The range of a linear transformation consists of all the output vectors.

For example, suppose T (

[
x
y

]
) =




x
2x

x+ y


.

Write the output vector as x



1
2
1


+ y



0
0
1


. Thus the range consists of all linear combinations of the vectors

(1, 2, 1) and (0, 0, 1).

Another way to find the range is to find the matrix A of T . The range is then just the column space of A.
Remember that the column space consists of all vectors of the form Av. (This is one of several ways to view the
column space.) Since T (v) = Av, we see that the column space of A and the range of T are really the same thing.

In the example, the matrix of T is A =




1 0
2 0
1 1


. Find the column space, and see that it gives the same result.

Coordinate Systems

It is often useful to use coordinate systems different from the usual xy coordinates. Every coordinate system is
specified by a basis. For example, in the two-dimensional examples below, the coordinate system in the middle is
the usual xy coordinate system. Its basis is the standard basis. The left coordinate system is the usual one rotated
by 45◦, and the one on the right is a stranger one which nevertheless has its uses. In each, the point (2, 1) is
indicated.
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Change of Basis Matrix

Given a coordinate system and its basis, we make a matrix M whose columns are the basis vectors. For example,

for the coordinate system on the right M =

(
3 1
2 4

)
.

Continuing this example: given a point with coordinates (2, 1) in the slanted coordinate system, to find its
standard coordinates, multiply by M .

(
3 1
2 4

)[
2
1

]
=

[
5
6

]
.

Given a point with standard coordinates (2, 3), to find its coordinates in the slanted coordinate system, multiply by
M−1.

1

10

(
4 −1

−2 3

)[
2
3

]
=

[
1/2
1/2

]
.

Change of Basis and Linear Transformations

We want to know how the matrix of a linear transformation changes when we change the basis. The answer is
simple: the matrix of the linear transformation in the new coordinates is given by B = M−1AM where A is the
usual matrix with respect to standard coordinates, and M is the change of basis matrix.

To see why this works, notice that Bv = M−1A(Mv). The term Mv translates v into standard coordinates. Then
we apply the linear transformation to it by multiplying by A. Finally, multiplying by M−1 translates back to the
new coordinate system.

Example: Let T be the linear transformation T (

[
x
y

]
) =

[
x+ 2y
5x+ 4y

]
. Find the matrix of T with respect to the

basis {(1, 2), (3, 5)}.
Solution: The change of basis matrix is M =

(
1 3
2 5

)
and the matrix of T with respect to the standard basis is

A =

(
1 2
5 4

)
. Therefore the matrix of T with respect to this basis is

B = M−1AM =

(
−5 3
2 −1

)(
1 2
5 4

)(
1 3
2 5

)
=

(
14 40
−3 −9

)

The matrix of the linear transformation in the above basis is rather awful. We would like to know what the best
basis to use would be. In other words, what basis will make the matrix of the linear transformation as simple as
possible? The simplest matrix we can hope for is a diagonal matrix.

Recall diagonalization gives A = SΛS−1, where Λ is a diagonal matrix. Solve this equation for Λ to get
Λ = S−1AS. This is in the form B = M−1AM where B = Λ and M = S. Therefore to find a basis in which the
linear transformation is given by a diagonal matrix, we use the basis which consists of the eigenvectors of A. Notice
that for this to work, A must be diagonalizable.

Example: Let T be the linear transformation in the example above. Find a basis in which T is given by a diagonal
matrix.

Solution: The eigenvalues of A are -1 and 6 with corresponding eigenvectors (−1, 1) and (2, 5). Therefore the
desired basis is {(−1, 1), (2, 5)}.
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Approximation of Dominant Eigenvalues and Eigenvectors

The dominant eigenvalue of a matrix is the eigenvalue with largest absolute value.∗ An eigenvector for a dominant
eigenvalue is called a dominant eigenvector. The dominant eigenvalue and its eigenvectors are often important in
applications.

We will use what is called the power method to approximate the dominant eigenvalue and eigenvectors.† Start with
a unit vector x0.

‡ Let

x1 =
Ax0

‖Ax0‖
, x2 =

Ax1

‖Ax1‖
, x3 =

Ax2

‖Ax2‖
, . . .

The vectors x1, x2, . . . eventually get closer and closer to the unit dominant eigenvector and the terms Ax1 · x1,
Ax2 · x2, . . . eventually get closer and closer to the dominant eigenvalue. When the values of consecutive terms are
very close together, the approximation is likely good, so this tells us when to stop.

The method above is best for use on a computer or calculator. If you need to do the computation by hand, finding
the lengths of the vectors can be cumbersome. Therefore use the following modification for hand calculations:

y1 = Ax0 , y2 = Ay1 , y3 = Ay2 , . . .

To convert from the y’s to the x’s turn the y into a unit vector. In general, xn = yn/‖yn‖. The last vector we get
when we decide to stop computing is an approximation to a dominant eigenvector. To approximate the unit
dominant eigenvector, divide the last vector by its length.

We can also approximate the dominant eigenvalue using the y’s. Recall from above that Axn · xn is an
approximation to the dominant eigenvalue. We have

Axn · xn =
yn+1 · yn

yn · yn

Example: Let A =

(
1 2
3 2

)
. Let x0 =

[
1
0

]
.

y1 = Ax0 =

(
1 2
3 2

)[
1
0

]
=

[
1
3

]

y2 = Ay1 =

(
1 2
3 2

)[
1
3

]
=

[
7
9

]

y3 = Ay2 =

(
1 2
3 2

)[
7
9

]
=

[
25
39

]

x3 =
y3

‖y3‖
=

1√
2146

[
25
39

]
≈

[
.5397
.8419

]

Ax2 · x2 =
y3 · y2

y2 · y2
=

(25, 39) · (7, 9)
(7, 9) · (7, 9) =

526

130
≈ 4.05

The actual unit dominant eigenvector is (2, 3)/
√
13 ≈ (.5547, .8321). We see that x3 is already a fairly good

approximation. The actual dominant eigenvalue is 4. We see that Ax2 · x2 is a fairly good approximation. Note
that the method for hand computation is not good for use on computers (or by hand if you’re computing lots of
terms) because the numbers quickly become huge. That’s why we divided each vector by its length in the original
form of the method.

∗If the eigenvalue with largest absolute value occurs more than once, then it is not considered to be a dominant eigenvalue. For
example, if det(A− λI) works out to (λ+ 5)(λ− 1), then the eigenvalues are -5 and 1. Therefore -5 is the dominant eigenvalue since it
has the largest absolute value. If on the other hand, det(A− λI) works out to (λ− 2)2(λ− 1), then the eigenvalues are 2, 2, 1. However
there is no dominant eigenvalue, since the eigenvalue with largest absolute value occurs more than once (i.e., it is a repeated root of the
polynomial).

†This method works if the dominant eigenvalue is positive. A modification of the method will work if it isn’t.
‡Warning: You can choose almost any unit vector as x0. However the method may not work if x0 happens to be orthogonal to the

dominant eigenvectors.
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